SOFiSTiK

Benchmark Example No. 18
Creep and Shrinkage Calculation of a Rectangular Prestressed Concrete CS

SOFiSTiK | 2024

SOFiSTIK AG

HQ Nuremberg	Office Garching
Flataustraße 14	Parkring 2
90411 Nürnberg	85748 Garching bei München
Germany	Germany
$\mathrm{T}+49(0) 911$ 39901-0	$\mathrm{T}+49(0) 89$ 315878-0
$\mathrm{F}+49(0) 911397904$	$\mathrm{~F}+49(0) 89315878-23$
	info@sofistik.com www.sofistik.com

This manual is protected by copyright laws. No part of it may be translated, copied or reproduced, in any form or by any means, without written permission from SOFiSTiK AG. SOFiSTiK reserves the right to modify or to release new editions of this manual.

The manual and the program have been thoroughly checked for errors. However, SOFiSTiK does not claim that either one is completely error free. Errors and omissions are corrected as soon as they are detected.

The user of the program is solely responsible for the applications. We strongly encourage the user to test the correctness of all calculations at least by random sampling.

Front Cover

Overview

Design Code Family(s): DIN
Design Code(s): DIN EN 1992-1-1
Module(s): AQB, CSM
Input file(s):
creep_shrinkage.dat

1 Problem Description

The problem consists of a simply supported beam with a rectangular cross-section of prestressed concrete, as shown in Fig. 1. The time dependent losses are calculated, considering the reduction of stress caused by the deformation of concrete due to creep and shrinkage, under the permanent loads.

Figure 1: Problem Description

2 Reference Solution

This example is concerned with the calculation of creep and shrinkage on a prestressed concrete cs, subject to bending and prestress force. The content of this problem is covered by the following parts of DIN EN 1992-1-1:2004 [1]:

- Creep and Shrinkage (Section 3.1.4)
- Annex B: Creep and Shrinkage (Section B.1, B.2)
- Time dependent losses of prestress for pre- and post-tensioning (Section 5.10.6)

The time dependant losses may be calculated by considering the following two reductions of stress [1]:

- due to the reduction of strain, caused by the deformation of concrete due to creep and shrinkage, under the permanent loads
- the reduction of stress in the steel due to the relaxation under tension.

In this Benchmark the stress loss due to creep and shrinkage will be examined.

3 Model and Results

Benchmark 17 is here extended for the case of creep and shrinkage developing on a prestressed concrete simply supported beam. The analysed system can be seen in Fig. 2, with properties as defined in Table 1. Further information about the tendon geometry and prestressing can be found in Benchmark 17. The beam consists of a rectangular cs and is prestressed and loaded with its own weight. A calculation of the creep and shrinkage is performed in the middle of the span with respect to DIN EN 1992-1-1:2004
(German National Annex) [1], [2]. The calculation steps [3] are presented below and the results are given in Table 2 for the calculation with AQB. For CSM only the results of the creep coefficients and the final losses are given, since the calculation is performed in steps.

Table 1: Model Properties

Material Properties	Geometric Properties	Loading (at $x=10 \mathrm{~m})$	Time
$C 35 / 45$	$h=100.0 \mathrm{~cm}$	$M_{g}=1250 \mathrm{kNm}$	$t_{0}=28$ days
$Y 1770$	$b=100.0 \mathrm{~cm}$	$N_{p}=-3653.0 \mathrm{kN}$	$t_{s}=0$ days
$R H=80$	$L=20.0 \mathrm{~m}$		$t_{e f f}=1000000$ days
	$A_{p}=28.5 \mathrm{~cm}^{2}$		

Figure 2: Simply Supported Beam

Table 2: Results

Result	AQB	CSM+AQB	Ref.
$\epsilon_{C s}$	$-18.85 \cdot 10^{-5}$	-	$-18.85 \cdot 10^{-5}$
ϵ	$-31.58 \cdot 10^{-5}$	-	$-31.58 \cdot 10^{-5}$
ϕ_{0}	1.463	1.463	1.463
$\phi\left(t, t_{0}\right)$	1.393	1.393	1.393
$\Delta \sigma_{p, c+s}[M P a]$	-66.62	-67.30	-68.45
$\Delta P_{c+s}[\mathrm{KN}]$	189.9	191.8	195.11

4 Design Process ${ }^{1}$

Design with respect to DIN EN 1992-1-1:2004 (NA) [1] [2]: ${ }^{2}$

Material:

Concrete: C 35/45

$E_{c m}=34077 \mathrm{~N} / \mathrm{mm}^{2}$
$f_{c k}=35 \mathrm{~N} / \mathrm{mm}^{2}$
$f_{c m}=43 \mathrm{~N} / \mathrm{mm}^{2}$
Prestressing Steel: Y 1770
$E_{p}=195000 \mathrm{~N} / \mathrm{mm}^{2}$
$f_{p k}=1770 \mathrm{~N} / \mathrm{mm}^{2}$
Prestressing system: BBV L19 $150 \mathrm{~mm}^{2}$
19 wires with area of $150 \mathrm{~mm}^{2}$ each, giving a total of $A_{p}=28.5 \mathrm{~cm}^{2}$

Cross-section:
$A_{c}=1.0 \cdot 1.0=1 \mathrm{~m}^{2}$
Diameter of duct $\phi_{\text {duct }}=97 \mathrm{~mm}$
Ratio $\alpha_{E, p}=E_{p} / E_{c m}=195000 / 34077=5.7223$
$A_{c, \text { netto }}=A_{c}-\pi \cdot\left(\phi_{\text {duct }} / 2\right)^{2}=0.9926 m^{2}$
$A_{\text {ideal }}=A_{C}+A_{p} \cdot \alpha_{E, p}=1.013 m^{2}$

Load Actions:

Self weight per length: $\gamma=25 \mathrm{kN} / \mathrm{m}$
At $x=10.0 \mathrm{~m}$ middle of the span:
$M_{g}=g_{1} \cdot L^{2} / 8=1250 k N m$
$N_{p}=P_{m 0}(x=10.0 m)=-3653.0 \mathrm{kN}($ from SOFiSTiK $)$

Calculation of stresses at $\chi=10.0 \mathrm{~m}$ midspan:
Position of the tendon: $z_{c p}=0,3901 \mathrm{~m}$

Prestress and self-weight at con. stage sect. 0 ($\mathrm{P}+\mathrm{G} \operatorname{cs} 0$)

[^0]3.1: Concrete
3.1.2: Tab. 3.1: $E_{c m}, f_{c k}$ and $f_{c m}$ for C 35/45
3.3: Prestressing Steel
3.3.6 (3): E_{p} for wires
3.3.2, 3.3.3: $f_{p k}$ Characteristic tensile strength of prestressing steel
z_{s} the new position of the center of the cross-section for cs0
$z_{p}=z_{c p}+z_{s}$
M_{p} bending moment caused by prestressing
$\sigma_{C, Q P}$ stress in concrete
t_{0} minimun age of concrete for loading t_{s} age of concrete at start of drying shrinkage
t age of concrete at the moment considered
3.1.4 (6): Eq. 3.8: $\epsilon_{c s}$ total shrinkage strain
3.1.4 (6): Eq. 3.9: $\epsilon_{c d}$ drying shrinkage strain
3.1.4 (6): Eq. 3.10: $\beta_{d s}$
3.1.4 (6): h_{0} the notional size (mm) of the $\operatorname{cs} h_{0}=2 A_{c} / u=500 \mathrm{~mm}$
3.1.4 (6): Tab. 3.3: k_{h} coefficient de pending on h_{0}

Annex B. 2 (1): Eq. B.11: $\epsilon_{c d, 0}$ basic drying shrinkage strain

Annex B. 2 (1): Eq. B.12: $\beta_{R H}$ $R H$ the ambient relative humidity (\%)

$$
N_{p}=-3653.0 \mathrm{kN} \text { and } M_{g}=1250 \mathrm{kNm}
$$

$M_{p_{1}}=N_{P} \cdot z_{c p}=-3653.0 \cdot 0.3901=-1425.04 k N m$
$M_{p_{2}}=N_{P} \cdot z_{s}=-3653.0 \cdot 0.002978=-10.879 k N m$
$M_{p}=-1425.04-10.879=-1435.91 k N m$
$M_{y}=1250-1435.91=-185.91 k N m$
$\sigma_{C, Q P}=\frac{-3653.0}{0.9926}+\frac{-185.91}{0.1633}=-4.82 \mathrm{MPa}$

Calculation of creep and shrinkage at $x=10.0 \mathrm{~m}$ midspan:
$t_{0}=28$ days
$t_{s}=0$ days
$t=t_{e f f}+t_{0}=1000000+28=1000028$ days
$\epsilon_{c s}=\epsilon_{c d}+\epsilon_{c a}$
$\epsilon_{c d}(t)=\beta_{d s}(t, t s) \cdot k_{h} \cdot \epsilon_{c d, 0}$
The development of the drying shrinkage strain in time is strongly depends on $\beta_{d s}(t, t s)$ factor. SOFiSTiK accounts not only for the age at start of drying t_{s} but also for the influence of the age of the prestressing t_{0}. Therefore, the calculation of factor $\beta_{d s}$ reads:
$\beta_{d s}=\beta_{d s}\left(t, t_{s}\right)-\beta_{d s}\left(t_{0}, t_{s}\right)$
$\beta_{d s}=\frac{\left(t-t_{s}\right)}{\left(t-t_{s}\right)+0.04 \cdot \sqrt{h_{0}^{3}}}-\frac{\left(t_{0}-t_{s}\right)}{\left(t_{0}-t_{s}\right)+0.04 \cdot \sqrt{h_{0}^{3}}}$
$\beta_{d s}=\frac{(1000028-0)}{(1000028-0)+0.04 \cdot \sqrt{500^{3}}}-\frac{(28-0)}{(28-0)+0.04 \cdot \sqrt{500^{3}}}$
$\beta_{d s}=0.99955-0.05892=0.94063$
$k_{h}=0.70$ for $h_{0} \geq 500 \mathrm{~mm}$
$\epsilon_{c d, 0}=0.85\left[\left(220+110 \cdot \alpha_{d s 1}\right) \cdot \exp \left(-\alpha_{d s 2} \cdot \frac{f_{c m}}{f_{c m o}}\right)\right] \cdot 10^{-6} \cdot \beta_{R H}$
$\beta_{R H}=1.55\left[1-\left(\frac{R H}{R H_{0}}\right)^{3}\right]=1.55\left[1-\left(\frac{80}{100}\right)^{3}\right]=0.7564$
$\epsilon_{c d, 0}=0.85\left[(220+110 \cdot 4) \cdot \exp \left(-0.12 \cdot \frac{43}{10}\right)\right] \cdot 10^{-6} \cdot 0.7564$
$\epsilon_{c d, 0}=2.533 \cdot 10^{-4}$
$\epsilon_{c d}=0.94063 \cdot 0.70 \cdot 2.533 \cdot 10^{-4}=0.0001668$
$\epsilon_{c d}=1.668 \cdot 10^{-4}=0.1668 \%$ 。
$\epsilon_{c a}(t)=\beta_{a s}(t) \cdot \epsilon_{c a}(\infty)$
$\epsilon_{c a}(\infty)=2.5\left(f_{c k}-10\right) \cdot 10^{-6}=2.5(35-10) \cdot 10^{-6}$
$\epsilon_{c a}(\infty)=6.25 \cdot 10^{-5}=0.0625 \%$
Proportionally to $\beta_{d s}(t, t s)$, SOFiSTiK calculates factor $\beta_{a s}$ as follows:
$\beta_{a s}=\beta_{a s}(t)-\beta_{a s}\left(t_{0}\right)$
$\beta_{a s}=1-e^{-0.2 \cdot \sqrt{t}}-\left(1-e^{-0.2 \cdot \sqrt{t_{0}}}\right)=e^{-0.2 \cdot \sqrt{t_{0}}}-e^{-0.2 \cdot \sqrt{t}}$
$\beta_{a s}=0.347$
$\epsilon=\epsilon_{c d, 0}+\epsilon_{c a}(\infty)=2.533 \cdot 10^{-4}+6.25 \cdot 10^{-5}$
$\epsilon=-31.58 \cdot 10^{-5}$
$\epsilon_{c a}=0.347 \cdot 6.25 \cdot 10^{-5}=2.169 \cdot 10^{-5}=0.02169 \%$
$\epsilon_{c s}=1.668 \cdot 10^{-4}+2.169 \cdot 10^{-5}=-18.85 \cdot 10^{-5}$
$\phi\left(t, t_{0}\right)=\phi_{0} \cdot \beta_{c}\left(t, t_{0}\right)$
$\phi_{0}=\phi_{R H} \cdot \beta\left(f_{c m}\right) \cdot \beta\left(t_{0}\right)$
$\phi_{R H}=\left[1+\frac{1-R H / 100}{0.1 \cdot \sqrt[3]{h_{0}}} \cdot \alpha_{1}\right] \cdot \alpha_{2}$
$\beta\left(f_{c m}\right)=\frac{16.8}{\sqrt{f_{c m}}}=16.8 / \sqrt{43}=2.562$
$\alpha_{1}=\left[\frac{35}{f_{c m}}\right]^{0.7} \leq 1=0.8658$
$\alpha_{2}=\left[\frac{35}{f_{c m}}\right]^{0.2} \leq 1=0.9597$
$\alpha_{3}=\left[\frac{35}{f_{c m}}\right]^{0.5} \leq 1=0.9022$
$\phi_{R H}=\left[1+\frac{1-80 / 100}{0.1 \cdot \sqrt[3]{500}} \cdot 0.8658\right] \cdot 0.9597=1.1691$
$\beta\left(t_{0}\right)=\frac{1}{\left(0.1+t_{0}^{0.20}\right)}$

Annex B. 2 (1): $\alpha_{d s 1}, \alpha_{d s 1}$ coefficients depending on type of cement.
For class $\mathrm{N} \alpha_{d s 1}=4, \alpha_{d s 2}=0.12$
3.1.4 (6): Eq. 3.11: $\epsilon_{c a}$ autogenous shrinkage strain
3.1.4 (6): Eq. 3.12: $\epsilon_{c a}(\infty)$
3.1.4 (6): Eq. 3.13: $\beta_{a s}$
ϵ absolute shrinkage strain
negative sign to declare losses
negative sign to declare losses

Annex B. 1 (1): Eq. B.1: $\phi\left(t, t_{0}\right)$ creep coefficient
Annex B. 1 (1): Eq. B.2: ϕ_{0} notional creep coefficient

Annex B. 1 (1): Eq. B.3: $\phi_{R H}$ factor for effect of relative humidity on creep

Annex B. 1 (1): Eq. B.4: $\beta\left(f_{c m}\right)$ factor for effect of concrete strength on creep

Annex B. 1 (1): Eq. B.8c: $\alpha_{1}, \alpha_{2}, \alpha_{3}$ coefficients to consider influence of concrete strength

Annex B. 1 (1): Eq. B.5: $\beta\left(t_{0}\right)$ factor for effect of concrete age at loading on creep

Annex B. 1 (2): Eq. B.9: $t_{0, T}$ tempera ture adjusted age of concrete at loading adjusted according to expression B. 10

Annex B. 1 (3): Eq. B.10: t_{T} temperature adjusted concrete age which replaces t in the corresponding equations

Annex B. 1 (1): Eq. B.7: $\beta_{c}\left(t, t_{0}\right)$ coefficient to describe the development of creep with time after loading

Annex B. 1 (1): Eq. B.8: β_{H} coefficient depending on relative humidity and notional member size

Annex B. 1 (3): The values of $\phi\left(t, t_{0}\right)$ given above should be associated with the tangent modulus E_{c}
3.1.4 (2): The values of the creep coefficient, $\phi\left(t, t_{0}\right)$ is related to E_{c}, the tangent modulus, which may be taken as $1.05 \cdot E_{c m}$
5.10 .6 (2): Eq. $5.46: \Delta P_{c+s+r}$ time de pendent losses of prestress
$\Delta \sigma_{p, c+s}$ variation of stress in tendons due to creep and shrinkage at location x, at time t
$t_{0}=t_{0, T} \cdot\left(\frac{9}{2+t_{0, T}^{1.2}}+1\right)^{\alpha} \geq 0.5$
$t_{T}=\sum_{i=1}^{n} e^{-\left(4000 /\left[273+T\left(\Delta t_{i}\right)\right]-13.65\right)} \cdot \Delta t_{i}$
$t_{0, T}=28 \cdot e^{-(4000 /[273+20]-13.65)}=28 \cdot 1.0=28.0$
$\Rightarrow t_{0}=28.0 \cdot\left(\frac{9}{2+28.0^{1.2}}+1\right)^{0}=28.0$
$\beta\left(t_{0}\right)=\frac{1}{\left(0.1+28.0^{0.20}\right)}=0.48844$
$\beta_{c}\left(t, t_{0}\right)=\left[\frac{\left(t-t_{0}\right)}{\left(\beta_{H}+t-t_{0}\right)}\right]^{0.3}$
$\beta_{H}=1.5 \cdot\left[1+(0.012 \cdot R H)^{18}\right] \cdot h_{0}+250 \cdot \alpha_{3} \leq 1500 \cdot \alpha_{3}$
$\beta_{H}=1.5 \cdot\left[1+(0.012 \cdot 80)^{18}\right] \cdot 500+250 \cdot 0.9022$
$\beta_{H}=1335.25 \leq 1500 \cdot 0.9022=1353.30$
$\Rightarrow \beta_{c}\left(t, t_{0}\right)=0.9996$
$\phi_{0}=1.1691 \cdot 2.562 \cdot 0.48844=1.463$
$\phi\left(t, t_{0}\right)=1.463 \cdot 0.9996 / 1.05=1.393$
According to EN, the creep value is related to the tangent Young's modulus E_{c}, where E_{c} being defined as $1.05 \cdot E_{c m}$. To account for this, SOFiSTiK adopts this scaling for the computed creep coefficient (in SOFiSTiK, all computations are consistently based on $E_{c m}$).
$\Delta P_{c+s+r}=A_{p} \cdot \Delta \sigma_{p, c+s+r}=A_{p} \frac{\epsilon_{c s} \cdot E_{p}+0.8 \Delta \sigma_{p r}+\frac{E_{p}}{E_{c m}} \phi\left(t, t_{0}\right) \cdot \sigma_{c, Q P}}{1+\frac{E_{p}}{E_{c m}} \frac{A_{p}}{A_{c}}\left(1+\frac{A_{c}}{I_{c}} z_{c p}^{2}\right)\left[1+0.8 \phi\left(t, t_{0}\right)\right]}$
In this example only the losses due to creep and shrinkage are taken into account, the reduction of stress due to relaxation ($\Delta \sigma_{p r}$) is ignored.
$\Delta \sigma_{p, c+s}=\frac{-0.1885 \cdot 10^{-3} \cdot 195000+5.7223 \cdot 1.393 \cdot(-4.82)}{1+5.7223 \frac{28.5 \cdot 10^{-4}}{0.9926}\left(1+\frac{0.9926}{0.08214} 0.3901^{2}\right)[1+0.8 \cdot 1.393]}$
$\Delta \sigma_{p, c+s}=-68.46 \mathrm{MPa}$
$\Delta P_{c+s}=A_{p} \cdot \Delta \sigma_{p, c+s}=28.5 \cdot 10^{-4} \cdot 68.46 \cdot 10^{3}=195.11 \mathrm{kN}$

5 Conclusion

This example shows the calculation of the time dependent losses due to creep and shrinkage. It has been shown that the results are in very good agreement with the reference solution.

6 Literature

[1] DIN EN 1992-1-1/NA: Eurocode 2: Design of concrete structures, Part 1-1/NA: General rules and rules for buildings - German version EN 1992-1-1:2005 (D), Nationaler Anhang Deutschland - Stand Februar 2010. CEN. 2010.
[2] F. Fingerloos, J. Hegger, and K. Zilch. DIN EN 1992-1-1 Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken - Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau. BVPI, DBV, ISB, VBI. Ernst \& Sohn, Beuth, 2012.
[3] Beispiele zur Bemessung nach Eurocode 2 - Band 1: Hochbau. Ernst \& Sohn. Deutschen Betonund Bautechnik-Verein E.V. 2011.

[^0]: ${ }^{1}$ The tools used in the design process are based on steel stress-strain diagrams, as defined in [1] 3.3.6: Fig. 3.10
 ${ }^{2}$ The sections mentioned in the margins refer to DIN EN 1992-1-1:2004 (German National Annex) [1], [2], unless otherwise specified.

