SOFiSTiK

DIRECT. ALIGNED. TO THE POINT.

Benchmark Example No. 12
Crack width calculation of reinforced beam acc.
DIN EN 1992-1-1

SOFiSTiK \| 2024

VERiFiCATION

DCE-EN12 Crack width calculation of reinforced beam acc. DIN EN 1992-1-1
VERiFiCATiON Manual, Service Pack 2024-4 Build 27
Copyright © 2024 by SOFiSTiK AG, Nuremberg, Germany.

SOFiSTIK AG

HQ Nuremberg	Office Garching
Flataustraße 14	Parkring 2
90411 Nürnberg	85748 Garching bei München
Germany	Germany
T +49 (0)911 39901-0	T +49 (0)89 315878-0
F +49(0)911 397904	F +49 (0)89 315878-23

This manual is protected by copyright laws. No part of it may be translated, copied or reproduced, in any form or by any means, without written permission from SOFiSTiK AG. SOFiSTiK reserves the right to modify or to release new editions of this manual.

The manual and the program have been thoroughly checked for errors. However, SOFiSTiK does not claim that either one is completely error free. Errors and omissions are corrected as soon as they are detected.

The user of the program is solely responsible for the applications. We strongly encourage the user to test the correctness of all calculations at least by random sampling.

Front Cover

Overview
Design Code Family(s): DIN
Design Code(s): DIN EN 1992-1-1
Module(s): AQB
Input file(s): crack_widths.dat

1 Problem Description

The problem consists of a rectangular section, asymmetrically reinforced, as shown in Fig. 1. Different loading conditions are examined, always consisting of a bending moment $M_{E d}$, and in addition with or without a compressive or tensile axial force $N_{E d}$. The crack width is determined.

Figure 1: Problem Description

2 Reference Solution

This example is concerned with the control of crack widths. The content of this problem is covered by the following parts of DIN EN 1992-1-1:2004 [1]:

- Design stress-strain curves for concrete and reinforcement (Section 3.1.7, 3.2.7)
- Basic assumptions for calculation of crack widths (Section 7.3.2, 7.3.3, 7.3.4)

Figure 2: Stress and Strain Distributions in the Design of Cross-sections

The design stress-strain diagram for reinforcing steel considered in this example, consists of an inclined top branch, as defined in DIN EN 1992-1-1:2004 [1] (Section 3.2.7).

3 Model and Results

The rectangular cross-section, with properties as defined in Table 1, is to be designed for crack width, with respect to DIN EN 1992-1-1:2004 (German National Annex) [1] [2]. The calculation steps with different loading conditions and calculated with different sections of DIN EN 1992-1-1:2004 are presented below and the results are given in Table 2.

Table 1: Model Properties

Material Properties	Geometric Properties	Loading
$C 25 / 30$	$h=100.0 \mathrm{~cm}$	$N_{E d}=0$ or $\pm 300 \mathrm{kN}$
$B 500 A$	$d=96.0 \mathrm{~cm}$	$M_{E d}=562.5 \mathrm{kNm}$
	$b=30.0 \mathrm{~cm}$	
	$\phi_{s}=25.0 \mathrm{~mm}, A_{s}=24.50 \mathrm{~cm}^{2}$	
	$\phi_{s^{\prime}}=12.0 \mathrm{~mm}, A_{s^{\prime}}=2.26 \mathrm{~cm}^{2}$	
	$w_{k}=0.3 \mathrm{~mm}$	

Table 2: Results

Case	Load	A_{s} given $\left[\mathrm{cm}^{2}\right]$	Result	SOF.	Ref.
I	$M_{E d}, N_{E d}=0$	24.50	$A_{s, r e q u}\left[\mathrm{~cm}^{2}\right]$	6.93	6.93
			$\sigma_{s}[M P a]$	207.85	207.85
II	$M_{E d}, N_{E d}=300$	24.50	$A_{s, r e q u}\left[\mathrm{~cm}^{2}\right]$	10.39	10.39
III	$M_{E d}, N_{E d}=-300$	24.50	$A_{s, r e q u}\left[\mathrm{~cm}^{2}\right]$	4.04	4.04
IV	$M_{E d}, N_{E d}=0$	24.50	$A_{s}\left[\mathrm{~cm}^{2}\right]$		ssed with
				given rei	rcement
			$\sigma_{s}[M P a]$	440.57	440.53
V	$M_{E d}, N_{E d}=0$	12.0	$A_{s}\left[\mathrm{~cm}^{2}\right]$	not	sed with
				given rein	orcement
		\rightarrow new: 14.54	$\sigma_{s}[M P a]$	436.30	436.28
VI	$M_{E d}, N_{E d}=0$	24.50	$\mathrm{w}_{k}[\mathrm{~mm}]$	0.13	0.13

4 Design Process ${ }^{1}$

Design with respect to DIN EN 1992-1-1:2004 (NA) [1] [2]:²

Material:

Concrete: $\gamma_{c}=1.50$
Steel: $\gamma_{s}=1.15$
$f_{c k}=25 \mathrm{MPa}$
$f_{c d}=a_{c c} \cdot f_{c k} / \gamma_{c}=0.85 \cdot 25 / 1.5=14.17 \mathrm{MPa}$
$f_{y k}=500 \mathrm{MPa}$
$f_{y d}=f_{y k} / \gamma_{s}=500 / 1.15=434.78 \mathrm{MPa}$
Design Load:
$M_{E d}=562.5 \mathrm{kNm}$
$N_{E d}=0.0$ or $\pm 300 \mathrm{kN}$

Minimum reinforcement areas

- Case I: $M_{E d}, N_{E d}=0.0$
$A_{s, \text { min }} \cdot \sigma_{s}=k_{c} \cdot k \cdot f_{c t, e f f} \cdot A_{c t}$
$f_{c t, e f f}=f_{c t m} \geq 3.0 \mathrm{MPa}$
$f_{c t, e f f}=2.6<3.0 \mathrm{MPa} \rightarrow f_{c t, e f f}=3.0 \mathrm{MPa}$
$A_{c t}=b \cdot h_{e f f}=0.3 \cdot 0.5=0.15 \mathrm{~m}^{2}$
$\square \nabla^{f_{c t, e f f}} h_{\text {eff }}=h / 2$
$k_{C}=0.4 \cdot\left[1-\frac{\sigma_{c}}{k_{1} \cdot\left(h / h^{*}\right) \cdot f_{c t, e f f}}\right] \leq 1$
$\sigma_{c}=N_{E d} /(b \cdot h)=0.0 \rightarrow k_{c}=0.4$
$k=0.8$ for $h \leq 300$
$\phi_{s}=\phi_{s}^{*} \cdot f_{c t, e f f} / 2.9 \mathrm{~N} / \mathrm{mm}^{2}$
$\phi_{s}^{*}=25 \cdot 2.9 / 3.0=24.16667$
(NDP) 2.4.2.4: (1), Tab. 2.1DE: Partial factors for materials

Tab. 3.1 : Strength for concrete
3.1.6: (1)P, Eq. (3.15): $a_{c c}=0.85$ considering long term effects
3.2.2: (3)P: yield strength $f_{y k}=500$ MPa
3.2.7: (2), Fig. 3.8
7.3.2: If crack control is required, a minimum amount of bonded reinforcement is required to control cracking in areas where tension is expected
7.3.2 (2): Eq. 7.1: $A_{s, \text { min }}$ minimum area of reinforcing steel within tensile zone (NDP) 7.3.2 (2): $f_{c t, \text { eff }}$ mean value of concrete tensile strength
When the cracking time can't be placed with certainty in the first 28 days then $f_{c t, e f f} \geq 3.0 \mathrm{MPa}$ for normal concrete Tab. 3.1: $f_{c t m}=2.6$ MPa for C 25
7.3.2 (2): $A_{c t}$ is the area of concrete within tensile zone, for pure bending of a rectangular section its height is $h / 2$
7.3.2 (2): Eq. 7.2: k_{c} for bending of rectangular sections
7.3.2 (2): Eq. 7.4: σ_{c} mean stress of the concrete
7.3.2 (2): h is the lesser value of b, h $h=\min \{300,1000\}=300 \mathrm{~mm}$
7.3.2 (NA.5): Eq. NA.7.5.2: For determination of the reinforcement stress the maximum bar diameter has to be modified

[^0](NDP) 7.3.3 Tab. 7.2DE (a)
where $w_{k}=0.3 \mathrm{~m}$ the prescribed maximum crack width
$\sigma_{s}=\sqrt{w_{k} \cdot 3.48 \cdot 10^{6} / \phi_{s}^{*}}=207.846 \mathrm{MPa}$
$A_{s, r e q u}=0.4 \cdot 0.8 \cdot 3.0 \cdot 0.15 \cdot 10^{4} / 207.846=6.928 \mathrm{~cm}^{2}$

- Case II: $N_{E d}=300 \mathrm{kN}$
$A_{S, \min } \cdot \sigma_{S}=k_{c} \cdot k \cdot f_{c t, e f f} \cdot A_{c t}$
$f_{c t, e f f}=f_{c t m} \geq 3.0 \mathrm{MPa}$
$f_{c t, e f f}=2.6<3.0 \mathrm{MPa} \rightarrow f_{c t, e f f}=3.0 \mathrm{MPa}$
$A_{c t}=b \cdot h_{e f f}=0.15 \mathrm{~m}^{2}$
$\sigma_{c}=\frac{N_{E d}}{b \cdot h}=\frac{300 \cdot 10^{3}}{300 \cdot 1000}=1.0 \mathrm{MPa}$
$k=0.8$ for $h \leq 300$
$\phi_{s}=\phi_{s}^{*} \cdot f_{c t, e f f} / 2.9 \mathrm{~N} / \mathrm{mm}^{2}$
$\phi_{s}^{*}=25 \cdot 2.9 / 3.0=24.16667$
$\sigma_{s}=\sqrt{w_{k} \cdot 3.48 \cdot 10^{6} / \phi_{s}^{*}}=207.846 \mathrm{MPa}$
$k_{c}=0.4 \cdot\left[1-\frac{\sigma_{c}}{k_{1} \cdot\left(h / h^{*}\right) \cdot f_{c t, e f f}}\right] \leq 1$
$k_{1}=2 \cdot h^{*} /(3 \cdot h)=2 / 3$
$k_{c}=0.4 \cdot\left[1+\frac{1.0}{(2 / 3) \cdot 1 \cdot 3.0}\right]=0.6 \leq 1$
$A_{s, r e q u}=0.6 \cdot 0.8 \cdot 3.0 \cdot 0.15 \cdot 10^{4} / 207.846=10.39 \mathrm{~cm}^{2}$
- Case III: $N_{E d}=-300 \mathrm{kN}$
$A_{s, \text { min }} \cdot \sigma_{s}=k_{C} \cdot k \cdot f_{c t, e f f} \cdot A_{c t}$
$f_{c t, e f f}=f_{c t m} \geq 3.0 \mathrm{MPa}$
$f_{c t, e f f}=2.6<3.0 \mathrm{MPa} \rightarrow f_{c t, e f f}=3.0 \mathrm{MPa}$
$A_{c t}=b \cdot h_{e f f}$
The height of the tensile zone is determined through the stresses:
$\sigma_{c}=\frac{N_{E d}}{b \cdot h}=\frac{300 \cdot 10^{3}}{300 \cdot 1000}=1.0 \mathrm{MPa}$
$\sigma_{u}=f_{c t, e f f}=3.0 \mathrm{MPa}$
$\Rightarrow h_{e f f}=\frac{3.0 \cdot 50}{3.0+1.0}=37.5 \mathrm{~cm}$
$A_{c t}=0.3 \cdot 0.375=0.1125 \mathrm{~m}^{2}$
$k=0.8$ for $h \leq 300$
7.3.2 (2): h is the lesser value of b, h $h=\min \{300,1000\}=300 \mathrm{~mm}$
(NDP) 7.3.2 (NA.5): Eq. NA.7.5.2: For determination of the reinforcement stress the maximum bar diameter has to be modified
$\phi_{s}=\phi_{s}^{*} \cdot f_{c t, e f f} / 2.9 \mathrm{~N} / \mathrm{mm}^{2}$
$\phi_{s}^{*}=25 \cdot 2.9 / 3.0=24.16667$
$\sigma_{s}=\sqrt{w_{k} \cdot 3.48 \cdot 10^{6} / \phi_{s}^{*}}=207.846 \mathrm{MPa}$
$k_{c}=0.4 \cdot\left[1-\frac{\sigma_{c}}{k_{1} \cdot\left(h / h^{*}\right) \cdot f_{c t, \text { eff }}}\right] \leq 1$
$k_{1}=1.5$
$k_{c}=0.4 \cdot\left[1-\frac{1.0}{1.5 \cdot 1 \cdot 3.0}\right]=0.3111 \leq 1$
$A_{s, r e q u}=0.3111 \cdot 0.8 \cdot 3.0 \cdot 0.1125 \cdot 10^{4} / 207.846=4.04 \mathrm{~cm}^{2}$

Control of cracking without direct calculation

- Case IV: $N_{E d}=0.0$
$f_{c t, e f f}=f_{c t m} \geq 3.0 \mathrm{MPa}$
$f_{c t, e f f}=2.6<3.0 \mathrm{MPa} \rightarrow f_{c t, e f f}=3.0 \mathrm{MPa}$
$\phi_{s}=\phi_{s}^{*} \cdot \frac{\sigma_{s} \cdot A_{s}}{4(h-d) \cdot b \cdot 2.9} \geq \phi_{s}^{*} \cdot \frac{f_{c t, e f f}}{2.9}$
$\phi_{s}=25 \mathrm{~mm}=\phi_{s}^{*} \cdot \frac{264.06 \cdot 24.50}{4(100-96) \cdot 30 \cdot 2.9}=\phi_{s}^{*} \cdot 4.6476$
$\rightarrow \phi_{s}^{*}=5.3791 \mathrm{~mm}$
$\sigma_{s}=\sqrt{w_{k} \cdot 3.48 \cdot 10^{6} / \phi_{s}^{*}}=440.53 \mathrm{MPa}$
$\sigma_{s}=264.06<440.53 \mathrm{MPa}$
which corresponds to the value calculated in SOFiSTiK [ssr]
\rightarrow crack width control is passed with given reinforcement.
In case the usage factor becomes 1.0 then the stresses σ_{s} are equal, as it can be seen in Case V below.
and $\phi_{s}=25 \mathrm{~mm}>\phi_{s}^{*} \cdot \frac{f_{c t, e f f}}{2.9}=5.3791 \cdot \frac{3.0}{2.9}=5.5646$
also control the steel stress with respect to the calculated strains
$\epsilon_{S}=0.440+1.913 \cdot(0.50-0.04)=1.31998$
$\rightarrow \sigma_{s}=0.00131998 \cdot 200000=264.0 \mathrm{MPa}$
or
from Tab. 7.2DE and for $\sigma_{s}=264.04 \approx 260.0 \mathrm{MPa}$
$\rightarrow \phi_{s}^{*}=15 \mathrm{~mm} \rightarrow \phi_{s}=\phi_{s}^{*} \cdot \frac{\sigma_{s} \cdot A_{s}}{4(h-d) \cdot b \cdot 2.9} \geq \phi_{s}^{*} \cdot \frac{f_{c t, e f f}}{2.9}$
(NDP) 7.3.3 Tab. 7.2DE (a)
where $w_{k}=0.3 \mathrm{~m}$ the prescribed maximum crack width
7.3.2 (2): Eq. 7.2: k_{c} for bending with axial force of rectangular sections
$h^{*}=1.0 \mathrm{~m}$ for $h \geq 1.0 \mathrm{~m}$
$k_{1}=1.5$ if $N_{E d}$ compressive force
7.3.3: Control of cracking without direct calculation
Examples calculated in this section are w.r.t. Table 7.2DE, here Table 7.3 N is not relevant
(NDP) 7.3.2 (2): $f_{c t, \text { eff }}$ mean value of concrete tensile strength
Tab. 3.1: $f_{c t m}=2.6$ MPa for C 25
(NDP) 7.3.3: Eq. 7.7.1DE: The maximum bar diameters should be modified for load action
$A_{s}=24.5 \mathrm{~cm}^{2}$ prescribed reinforcement
(NDP) 7.3.3 Tab. 7.2DE (a)
where $w_{k}=0.3 \mathrm{~m}$ the prescribed maximum crack width
(NDP) 7.3.3 Tab. 7.2DE (a)
(NDP) 7.3.3: Eq. 7.7.1DE: The maximum bar diameters should be modified for load action
(NDP) 7.3.2 (2): $f_{c t, \text { eff }}$ mean value of concrete tensile strength
Tab. 3.1: $f_{c t m}=2.6 \mathrm{MPa}$ for C 25
(NDP) 7.3.3 Tab. 7.2DE (a)
(NDP) 7.3.3: Eq. 7.7.1DE: The maximum bar diameters should be modified for load action
(NDP) 7.3.3 Tab. 7.2DE (a)
7.3.3: Eq. 7.7.1DE: The maximum bar diameters should be modified for load action
(NDP) 7.3.3 Tab. 7.2DE (a)
where $w_{k}=0.3 \mathrm{~m}$ the prescribed maximum crack width
$\phi_{s}=15 \cdot \frac{264.06 \cdot 24.50}{4(100-96) \cdot 30 \cdot 2.9}=69.69 \mathrm{~mm}>25 \mathrm{~mm}$
\rightarrow crack width control is passed with given reinforcement.
- Case V: $N_{E d}=0.0, A_{S}=12.0 \mathrm{~cm}^{2}$

In this case, the prescribed reinforcement is decreased from $A_{s}=$ $24.5 \mathrm{~cm}^{2}$ to $A_{s}=12.0 \mathrm{~cm}^{2}$ in order to examine a case where the the crack width control is not passed with the given reinforcement.
$f_{c t, e f f}=f_{c t m} \geq 3.0 \mathrm{MPa}$
$f_{c t, e f f}=2.6<3.0 \mathrm{MPa} \rightarrow f_{c t, e f f}=3.0 \mathrm{MPa}$
from Tab. 7.2DE and for $\sigma_{s}=509.15 \approx 510.0 \mathrm{MPa}$
$\rightarrow \phi_{s}^{*} \approx 3.9 \mathrm{~mm} \rightarrow \phi_{s}=\phi_{s}^{*} \cdot \frac{\sigma_{s} \cdot A_{s}}{4(h-d) \cdot b \cdot 2.9}$
$\phi_{s}=3.9 \cdot \frac{509.15 \cdot 12.0}{4(100-96) \cdot 30 \cdot 2.9}=17.12 \mathrm{~mm}<25 \mathrm{~mm}$
\rightarrow crack width control is not passed with given reinforcement.
\rightarrow start increasing reinforcement in order to be in the limits of admissible steel stresses
from Tab. 7.2DE and for $\sigma_{s}=436.43 \mathrm{MPa}$
$\rightarrow \phi_{s}^{*} \approx 5.6 \mathrm{~mm} \rightarrow \phi_{s}=\phi_{s}^{*} \cdot \frac{\sigma_{s} \cdot A_{s}}{4(h-d) \cdot b \cdot 2.9}$
$\phi_{s}=5.6 \cdot \frac{436.43 \cdot 14.54}{4(100-96) \cdot 30 \cdot 2.9}=25.45 \mathrm{~mm} \geq 25 \mathrm{~mm}$
\rightarrow crack width control passed with additional reinforcement.
If we now input as prescribed reinforcement the reinforcement that is calculated in order to pass crack control, i.e. $A_{s}=14.54 \mathrm{~cm}^{2}$ we get a steel stress of $\sigma_{s}=436.36 \mathrm{MPa}$ which gives
$\phi_{s}=25 \mathrm{~mm}=\phi_{s}^{*} \cdot \frac{436.36 \cdot 14.54}{4(100-96) \cdot 30 \cdot 2.9}$
$\rightarrow \phi_{s}^{*}=5.4849 \mathrm{~mm}$
$\sigma_{s}=\sqrt{w_{k} \cdot 3.48 \cdot 10^{6} / \phi_{s}^{*}}$
$\sigma_{s}=\sqrt{0.3 \cdot 3.48 \cdot 10^{6} / 5.4849}=436.28 \mathrm{MPa}$
Here we can notice that the stresses are equal leading to a usage factor of 1.0

Control of cracking with direct
calculation
7.3.4: Control of cracking with direct calculation

- Case VI: $N_{E d}=0.0$
$\alpha_{e}=E_{s} / E_{c m}=200000 / 31476=6.354$
$\rho_{p, e f f}=\left(A_{s}+\xi_{1}^{2} \cdot A_{p}^{\prime}\right) / A_{c, e f f}$
$A_{c, e f f}=h_{c, e f} \cdot b$
$h / d_{1}=100 / 4=25.00 \rightarrow h_{c, \text { ef }} / d_{1}=3.25$
$A_{c, e f f}=(3.25 \cdot 4) \cdot 30=13 \cdot 30=390 \mathrm{~cm}^{2}$
$A_{p}^{\prime}=0.0 \mathrm{~cm}^{2}$
$\rho_{p, e f f}=24.50 / 390=0.06282$
$\epsilon_{s m}-\epsilon_{c m}=\frac{\sigma_{s}-k_{t} \cdot \frac{f_{c t, e f f}}{\rho_{p, e f f}} \cdot\left(1+\alpha_{e} \cdot \rho_{p, e f f}\right)}{E_{s}} \geq 0.6 \cdot \frac{\sigma_{s}}{E_{s}}$
$f_{c t, e f f}=f_{c t m}=0.30 \cdot f_{c k}^{2 / 3}=2.565 \approx 2.6 \mathrm{MPa}$
$f_{c t, e f f}=2.6<3.0 \mathrm{MPa} \rightarrow f_{c t, e f f}=3.0 \mathrm{MPa}$
$\epsilon_{s m}-\epsilon_{c m}=\frac{264.06-0.4 \cdot \frac{2.565}{0.06282} \cdot(1+6.354 \cdot 0.06282)}{200000}$
$\epsilon_{s m}-\epsilon_{c m}=1.2060 \cdot 10^{-3}>0.6 \cdot \frac{264.06}{200000}=0.79218 \cdot 10^{-3}$
$s_{r, \max }=\frac{\phi}{3.6 \cdot \rho_{p, e f f}} \leq \frac{\sigma_{s} \cdot \phi}{3.6 \cdot f_{c t, e f f}}$
$s_{r, \max }=\frac{25}{3.6 \cdot 0.06282}=110.545 \mathrm{~mm}$
$s_{r, \max } \leq \frac{\sigma_{s} \cdot \phi}{3.6 \cdot f_{c t, e f f}}=611.25 \mathrm{~mm}$
$w_{k}=s_{r, m a x} \cdot\left(\epsilon_{s m}-\epsilon_{c m}\right)=110.545 \cdot 1.2060 \cdot 10^{-3}$
$w_{k}=0.133<0.3 \mathrm{~mm} \rightarrow$ Check for crack width passed with given reinforcements

Stress limitation

$$
\begin{aligned}
\sigma_{\max , t} & =k_{3} \cdot f_{y k} \\
\sigma_{\max , t} & =0.80 \cdot 500 \mathrm{MPa} \\
\sigma_{\max , t} & =400 \mathrm{MPa}
\end{aligned}
$$

7.3.4 (1): α_{e} is the ratio $E_{s} / E_{c m}$
7.3.4 (1): Eq. 7.10: where A_{p}^{\prime} and $A_{c, \text { eff }}$ are defined in 7.3.2 (3)
7.3.2 (3): $h_{c, \text { ef }}$ see Fig. 7.1DE (d)
7.3.2 (3): where A_{p}^{\prime} is the area of pre or post-tensioned tendons within $A_{c, \text { eff }}$
7.3.4 (1): Eq. 7.9: the difference of the mean strain in the reinforcement and in the concrete
(NDP) 7.3.2 (2): $f_{c t, \text { eff }}$ mean value of concrete tensile strength, here no minimum value of $f_{c t, \text { eff }} \geq 3.0 \mathrm{MPa}$ is set Tab. 3.1: $f_{c t m}=2.6 \mathrm{MPa}$ for C 25 or $f_{c t m}=0.30 \cdot f_{c k}^{2 / 3}=2.565 \mathrm{MPa}$
k_{t} : factor dependent on the duration of the load, $k_{t}=0.4$ for long term loading
(NDP) 7.3.4 (3): Eq. 7.11: $s_{r, \text { max }}$ is the maximum crack spacing
7.3.4 (1): Eq. 7.8: w_{k} the crack width

5 Conclusion

This example shows the calculation of crack widths. Various ways of reference calculations are demonstrated, in order to compare the SOFiSTiK results to. It has been shown that the results are reproduced with excellent accuracy.

6 Literature

[1] DIN EN 1992-1-1/NA: Eurocode 2: Design of concrete structures, Part 1-1/NA: General rules and rules for buildings - German version EN 1992-1-1:2005 (D), Nationaler Anhang Deutschland - Stand Februar 2010. CEN. 2010.
[2] F. Fingerloos, J. Hegger, and K. Zilch. DIN EN 1992-1-1 Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken - Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau. BVPI, DBV, ISB, VBI. Ernst \& Sohn, Beuth, 2012.

[^0]: ${ }^{1}$ The tools used in the design process are based on steel stress-strain diagrams, as defined in [1] 3.2.7:(2), Fig. 3.8.
 ${ }^{2}$ The sections mentioned in the margins refer to DIN EN 1992-1-1:2004 (German National Annex) [1], [2], unless otherwise specified.

