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Warping Torsion Bar

Overview
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1 Problem Description

A cantilever I-bar is fixed at both ends, as shown in Fig. 1, and subjected to a uniformly distributed
torque mT [1]. Determine the angle of twist ϕ at the midspan.
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Figure 1: An I-bar with Uniformly Distributed Torque

2 Reference Solution

In mechanics, torsion is the twisting of a structure due to an applied torque. There are two types of
torsion: St. Venant torsion and warping torsion. St. Venant torsion exists always when an element is
twisted, whereas the warping torsion occurs additionally under specific conditions. The warping of a
section depends on the section geometry which means that there exist warping-free, such as circular,
and warping-restrained sections. St. Venant torsion is based on the assumption that either the cross-
section is warping-free or that the warping is not constrained. If at least one of these conditions is not
met then the warping torsion appears [2].
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Figure 2: Circular Shaft

A member undergoing torsion will rotate about its shear center through an angle of ϕ. Consider a circular
shaft that is attached to a fixed support at one end. If a torque T is applied to the other end, the shaft
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Warping Torsion Bar

will twist, with its free end rotating through an angle ϕ called the angle of twist [3]:

ϕ =
TL

GT
, (1)

where G is the shear modulus and T the torsional moment of inertia. For a circular shaft subjected to
torsion, each cross-section rotates along the shaft as a solid rigid slab (warping-free cross-section). The
torsional moment resisted by the cross-section is:

T = GT
dϕ

d
, (2)

For most cross-sections, e.g. non-circular, this rotation of the cross-section is accompanied by warping.
Then the total torsional moment resisted by the cross-section becomes the sum of the pure torsion
and warping torsion [4]. The stresses induced on the member is then classified into three categories:
torsional shear stress, warping shear stress and warping normal stress. For example, when a bar of an
I-cross-section is subjected to torsion, then the flanges of the cross-section experience bending in the
flange planes. This means that torsion induces bending about the strong axis of the flanges. When the
tendency for the cross-section to warp freely is prevented or restrained, it causes stresses to develop.
The torque that the cross-section carries by bending is:

T = ECM
d3ϕ

d3
(3)

where ECM, is the warping torsion stiffness. Furthermore, in warping torsion theory the bimoment is
defined as an auxiliary quantity. The objective is to introduce a degree of freedom for beam elements
that represents the torque due to restrained warping. The bimoment Mω is defined as:

Mω = ECM
d2ϕ

d2
(4)

It should be noted, that the bimoment itself is not measurable, however it serves as a convenient param-
eter to quantify this prevention of warping.
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Figure 3: The Warping Torsion Problem
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Fig. 3 (a) shows the warping torsion problem of a bar subjected to a distributed external torque. The
differential equation governing the warping torsion problem, for a constant cross-section, becomes [5]:

ECM
d4ϕ

d4
− GT

d2ϕ

d2
=mT , (5)

where mT the distributed torque along the bar. The natural boundary conditions are:

Mω = ECM
d2ϕ

d2
, z = 0 or l (6)

and

−ECM
d3ϕ

d3
+ GT

dϕ

d
= MT , z = 0 or l (7)

where MT is the concentrated end torque and Mω the bimoment. Introducing λ, the so called decay
factor, in the above equation, and a simplified notation for the derivatives of ϕ, we obtain:

ϕ
′′′′
− λ2ϕ

′′
=

mT

ECM
. (8)

The solution of the warping torsion equation depends on the type of the torsional load and the kinematic
boundary conditions, especially the amount of prevention of the warping. The complete solution system
of Eq. 8, for the load type given in Fig. 3 (c), is thus:

ϕ =
C1

λ2
snh λ +

C2

λ2
cosh λ + C3 + C4 −

1

2GT
(m0 +

1

3
m1




)2 (9)

ϕ
′
=
C1

λ
cosh λ +

C2

λ
snh λ + C3 −

1

2GT
(2m0 +m1




) (10)

ϕ
′′
= C1snh λ + C2cosh λ −

1

GT
(m0 +m1




) (11)

ϕ
′′′
= C1λcosh λ + C2λsnh λ −

m1

GT 
(12)

The values of the constants C1 to C4 can be derived with respect to the kinematic boundary conditions of
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the problem. For the case of warping-free sections, where CM = 0, the differential equation is shortened,
leading to the St. Venant torsion problem.

3 Model and Results

The properties of the analysed model, are defined in Table 1. The corresponding results are presented
in Table 2. Figure 4 shows the deformed shape of the structure and the angle of twist.

Table 1: Model Properties

Material Properties Cross-sectional Properties Loading

E = 217396.3331684N/mm2  = 1m mT = 1Nmm/mm

G = 81386.6878N/mm2 h = 80mm

ν = 0.33557673 t = 2mm

b = 40mm

CM = 0.323 × 108mm6

T = 431.979mm4

Table 2: Results

Twist in x-direction Ref. [1]

ϕ [mrd] 0.329659 0.329262

Figure 4: Deformed Stucture

4 Conclusion

This example presents the warping torsion problem. The total torsional moment resisted by the cross-
section is the sum of that due to pure torsion, which is always present, and that due to warping. It has
been shown that the behaviour of the beam for warping is captured correctly.
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