

Benchmark Example No. 18

Three-storey Column under Large Compressive Force and Torsional Moment

SOFiSTiK | 2023

VERIFICATION BE18 Three-storey Column under Large Compressive Force and Torsional Moment

VERiFiCATiON Manual, Service Pack 2023-10 Build 44

Copyright © 2024 by SOFiSTiK AG, Nuremberg, Germany.

SOFISTIK AG

HQ Nuremberg Office Garching Flataustraße 14 Parkring 2

90411 Nürnberg 85748 Garching bei München

Germany Germany

T +49 (0)911 39901-0 T +49 (0)89 315878-0 F +49 (0)911 397904 F +49 (0)89 315878-23

info@sofistik.com www.sofistik.com

This manual is protected by copyright laws. No part of it may be translated, copied or reproduced, in any form or by any means, without written permission from SOFiSTiK AG. SOFiSTiK reserves the right to modify or to release new editions of this manual.

The manual and the program have been thoroughly checked for errors. However, SOFiSTiK does not claim that either one is completely error free. Errors and omissions are corrected as soon as they are detected.

The user of the program is solely responsible for the applications. We strongly encourage the user to test the correctness of all calculations at least by random sampling.

Overview

Topic(s):

Element Type(s): B3D

Analysis Type(s): STAT, GNL

Procedure(s):

Module(s): ASE, DYNA

Input file(s): three_storey_column.dat

1 Problem Description

The problem consists of a three-storey column, subjected to a large compressive axial force N and a torsional moment M_t at the middle, as shown in Fig. 1. The rotation and twisting as well as the torsional moments of the structure are determined.

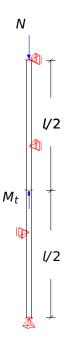


Figure 1: Problem Description

2 Reference Solution

A large axial compressive force is applied to the column of Fig. 1, in combination with a torsional moment at the middle, which can cause warping and potentially buckling of the structure. In order to account for this effect, second order theory has to be utilised. The total torsional moment M_T is given as a sum of the different torsional parts, the primary, secondary and third respectively:

$$\sum M_{\times} = M_{T} = M_{T1} + M_{T2} + M_{T3}, \qquad (1)$$

where

$$M_{T1} = G I_T \phi', \tag{2}$$

$$M_{T2} = -E C_M \phi^{"'}, \tag{3}$$

$$M_{T3} = N i_p^2 \phi', \tag{4}$$

and the warping moment

$$M_{\omega} = -E C_{M} \phi^{"}. \tag{5}$$

where G is the shear modulus, I_T the torsional moment of inertia, i_p the polar radius of gyration and EC_M the warping torsion stiffness. Introducing the above into Eq. 1 we have:

$$\left(GI_T + Ni_p^2\right)\phi' - EC_M\phi''' = M_T = \sum M_\chi. \tag{6}$$

3 Model and Results

The properties of the model [1] are defined in Table 1. A standard steel material is used and an I-beam profile for the cross-section. A safety factor $\gamma_M=1.1$ is used, which according to DIN 18800-2 it is applied both to the yield strength and the stiffness. At the supports the warping is not constrained. The cross-sectional properties given in Table 1 are the values calculated by SOFiSTiK, matching the analytical solution, except from the torsional moment I_T and the warping modulus C_M which are modified to match the values of the reference example. This modification is done only for the sake of comparison and it has to be noted that the reference results [1] are computed with another finite element software, and not with respect to an analytical solution.

Table 1: Model Properties

Material Properties	Geometric Properties	Loading
$\gamma_M = 1.1$	b = 180 mm	N = 1712 kN
l = 6 m	h = 400 mm	$M_t = 272 kN cm$
S 355	$t_{web} = 10 \ mm$	
	$t_{flange} = 14 mm$	
	$C_M = 506884 cm^6$	
	$I_y = 23071.6 cm^4$	
	$I_z = 1363.9 cm^4$	
	$I_T = 44.18 cm^4$	

The results are presented in Table 2 and Fig 2. The value of M_{T3} is not given in the Reference [1], but

according to Eq. 4 is computed as $-721 \, kNcm$, which matches the calculated value by SOFiSTiK. If we now sum the torsional moment parts, it is observed that Eq. 1 is satisfied and that the total torsional moment at x = 0 is $136 \, kNcm$.

Table 2: Results

	SOF.	Ref.[1]
$\phi \left[mrad \right] (x = l/2)$	294.4	294
ϕ' [mrad/cm] (x = 0; x = l)	1.5096	1.50965
$M_{T1} [kN cm] (x = 0)$	491	491
$M_{T2} [kN cm] (x = 0)$	366	366
$M_{T3} [kN cm] (x = 0)$	-721	-
$M_T [kN cm] (x = 0)$	136	136
M_{ω} [kN cm]	85583	85620

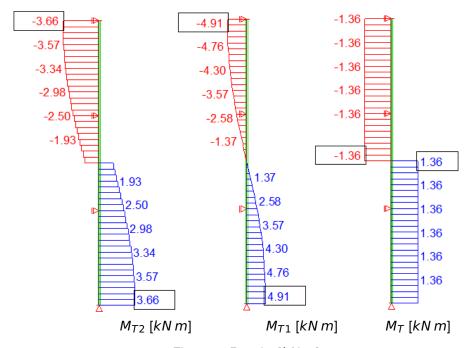


Figure 2: Results [kN m]

4 Conclusion

This example examines the torsional behaviour of the beam and the different parts involved in the calculation of the total torsional moment. The results are reproduced accurately.

5 Literature

[1] V. Gensichen and G. Lumpe. *Anmerkungen zur linearen und nichtlinearen Torsionstheorie im Stahlbau*. Stahlbau Seminar 2012.

