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About this Manual

1 About this Manual

The primary objective of this manual is to verify the capabilities of SOFiSTIK by means of nontrivial
problems which are bound to reference solutions.

To this end, this manual contains a compilation of a number of selected computational benchmarks, each
benchmark focusing on a specific (mechanical/design) topic. The obtained results from the SOFISTiK
analysis are contrasted with corresponding reference solutions.

The tasks covered by SOFiSTiK, address a broad scope of engineering applications and it is therefore
not possible to validate all specific features with known reference solutions in terms of this Verification
Manual. An attempt has been made though, to include most significant features of the software with
respect to common problems of general static and dynamic analysis of structures.

1.1 Layout and Organization of a Benchmark

For the description of each Benchmark, a standard format is employed, where the following topics are
always treated:

+ Problem Description

+ Reference Solution

Model and Results
» Conclusion
* Literature

First, the problem description is given, where the target of the benchmark is stated, followed by the
reference solution, where usually a closed-form analytical solution is presented, when available. The
next section is the description of the model, where its properties, the loading configuration, the analysis
method and assumptions, further information on the finite element model, are presented in detail. Finally,
the results are discussed and evaluated with respect to the reference solution and a final conclusion for
the response of the software to the specific problem is drawn. Last but not least, the textbooks and
references used for the verification examples are listed, which are usually well known and come from
widely acclaimed engineering literature sources.

1.2 Finding the Benchmark of interest

There are several ways of locating a Benchmark that is of interest for the user. For each example a
description table is provided in the beginning of the document, where all corresponding categories, that
are treated by the specific benchmark, are tabulated, as well as the name of the corresponding input
file. Such a description table with some example entries, follows next.

Element Type(s): C2D
Analysis Type(s): STAT, MNL
Procedure(s): LSTP

"Where available, analytical solutions serve as reference. Where this is not feasible, numerical or empirical solutions are
referred to. In any case, the origin of the reference solution is explicitly stated.

SOFISTiK 2022 | VERIFICATION - Mechanical Benchmarks 3
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Topic(s): SOIL
Module(s): TALPA
Input file(s): passive_earth_pressure.dat

As it can be seen, the available categories are the element type, the analysis type, the procedure, the
topics and the modules. For each category that is provided in the description table, a hyperlink is created,
linking each example to the global categories tables. In this manner, the user has a direct overview of
the attributes involved in each problem, and at the same time is able to browse by category through the
Verification Manual focusing only on the one of his interest. Table 1.1 provides an overview of all the
categories options that are available.

Table 1.1: Categories Overview

Categories Options

Continuum 3D

Continuum 2D (plane strain)
Continuum axisymmetric
Shell

FE beam 3D

Nonlinear FE beam 3D (AQB)
Element Type

Fiber beam 2D
Fiber beam 3D
Truss element

Cable element
Spring element

Damping element

Couplings

Geometrically nonlinear

Physically nonlinear
Analysis Type Dynamic

Static

Potential problem

Buckling analysis

Eigenvalue/ Modal analysis
Procedure

Time stepping

Load stepping

Phi-C reduction

Soil related

Topic Seismic

4 VERIFICATION - Mechanical Benchmarks | SOFiSTiK 2022
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Table 1.1: (continued)
Categories Options
Fire design
AQB
AQUA
ASE
Module BDK
BEMESS
CSM
DYNA
SOFILOAD
SOFIMSHC
STAR2
TALPA
TENDON
1.3 Symbols
For the purpose of this manual the following symbols and abbreviations apply.
SOF. SOFiSTIiK
Ref. reference
Tol. tolerance
cs cross-section
sect. section
temp. temperature
homog. homogeneous
Be. benchmark
con. construction
SDOF single degree of freedom
er relative error of the approximate number
ler| absolute relative error of the approximate number
e error of the approximate number
le| absolute error of the approximate number
exp () same as el
SOFiSTIK 2022 | VERIFICATION - Mechanical Benchmarks 5
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2 Index by Categories

Subsequent tables show all Benchmarks included in this Verification Manual, indexed by category.

2.1 Mechanical Benchmarks

ELEMENT TYPE Keyword | Benchmark Examples

Continuum 3D C3D BE41, BE42, BE43

Continuum 2D caD BE20, BE21, BE22, BE28, BE29, BE30, BE38,
BE44, BE45, BE50, BE56

Continuum axisymmetric CAXI BE48, BE49

Shell SH3D BE7, BES, BE11, BE14, BE32, BE33, BE34, BE35,
BE39, BE46, BE55

FE beam 3D B3D BE3, BE4, BE5, BE6, BE7, BES, BE9, BE10, BE11,
BE12, BE13, BE15, BE16, BE17, BE18, BE19,
BE25, BE37, BE40, BE46, BE47, BE5S5

Fiber beam 2D BF2D BE11, BE32, BE33, BE34, BE35

Truss element TRUS BE1, BE31

Spring element SPRI BE23, BE24, BE26, BE27

Damper element DAMP BE24, BE26

ANALYSIS TYPE Keyword | Benchmark Examples

Geometrically nonlinear GNL BE4, BE7, BE8, BE12, BE13, BE14, BE15, BE16,
BE17, BE18, BE19, BE31, BE37, BE40

Physically nonlinear MNL BE11, BE20, BE21, BE22, BE29, BE32, BESS3,
BE34, BE35, BE38, BE46, BE47, BE48, BE49,
BE56

Dynamic DYN BE23, BE24, BE25, BE26, BE27, BE39, BE50

Static STAT BE1, BE2, BE3, BE4, BE5, BE6, BE7, BES, BE9,
BE10, BE11, BE12, BE13, BE14, BE15, BE16,
BE17, BE18, BE19, BE20, BE21, BE22, BEZ28,
BE29, BE30, BE31, BE32, BE33, BE34, BE35,
BE37, BE38, BE40, BE41, BE42, BE43, BE44,
BE45, BE46
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3 SOFiSTiK SQA Policy

3.1 Obijectives
3.1.1 About SOFiSTiK

SOFiSTIK finite element software has been continuously developed since 1981. It is currently used
by more than 10000 customers worldwide. SOFiSTiK is a multipurpose tool with extensive capabilities
which fall into a wide spectrum of engineering analyses such as static and dynamic structural analysis,
modal and buckling eigenvalue problems, nonlinearities and higher order effects, geotechnics and tunnel
analysis, heat transfer and fire analysis, as well as numerous types of other applications.

3.1.2 Innovation and Reliability

As a provider of cutting-edge engineering software, confidence in robustness and reliability of the product
is an issue of outstanding relevance for SOFiSTiK. To some degree, however, innovation and reliability
are conflicting targets, since every change introduces new possible sources of uncertainty and error.
To meet both demands on a sustainable basis, SOFiSTIiK has installed a comprehensive quality assur-
ance system. The involved organizational procedures and instruments are documented in the following
Sections.

3.2 Organisation

3.2.1 Software Release Schedule

SOFiSTiK is now switching to a yearly release cycle for all SOFiSTiK products (incl. current OEMs) with
a service period of 3 years. Meaning the next release 2023 will not only be a BIM App and compatibility
release for SOFICAD and SOFiPLUS, but also a release of the FEA products including latest OEM
versions: e.g. SOFiSTIK — 2023.

The first customer shipment (FCS) of a SOFiSTiK major release is preceded by an extensive testing
period. The maijor release cycle is supplemented by a two-month service pack cycle. Service packs
are quality assured, which means they have passed both the continuous testing procedures and the
functional tests. They are available for download via the SOFiSTiK update tool SOFiSTiK Application
Manager (SAM).

[ 2019 [ 2020 [ 2021 [ 2022 | 2023 | 2024 [ 2025 | 2026 | 2027 | 2027 |
FCS Discontinuation of Software-Service
101.08.2019 130.09.2023
SOFiSTiK 2020
TSummer 2021

Start of Transition Phase

FCS Discontinuation of Software-Service
106.08.2021 1

| _SOF
1 Planned: Summer 2022
Start of Transition Phase

FCS Discontinuation of Software-Service
L Planned: Summer 2022 1

Figure 3.1: SOFiSTiK Release Schedule

SOFISTiK 2022 | VERIFICATION - Mechanical Benchmarks 11
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Software updates for the current version (service packs) include bug-fixes and minor new features. Major
new developments with increased potential regarding side- effects are reserved for major releases with
an obligatory extensive testing period.

3.2.2 SQA Modules - Classification

Figure 3.2 depicts the "three pillars” of the SOFiSTiK SQA procedure. Preventive and analytic provisions
can be differentiated.

Preventive provisions essentially concern the organization of the development process. They aim at
minimizing human errors by a high degree of automatism and by avoiding error-prone stress situations.
These provisions comprise:

+ A thoroughly planned feature map and release schedule.

« Strict phase differentiation: Prior to any software release (also for service packs), the development
phase is followed up by a consolidation phase . This phase is characterized by extensive functional
testing. No new features are implemented, only test feedback is incorporated. For major releases,
an additional BETA test phase is scheduled.

+ Fully automated build and publishing mechanisms.

Analytic provisions provide for the actual testing of the software products. Continuous Testing directly
accompanies the development process: Automated and modular regression tests assure feedback at a
very early stage of the development (Section 3.3.3: Continuous Testing). Functional Testing is carried
out in particular during the consolidation phases. These tests essentially involve manual testing; they
focus on comprehensive workflow tests and product oriented semantic tests.

SQA

(Software Quality Assurance)

Development Process . .
- Continuous Testing

Phase differentiation, build- and Functional Testing

ST mseemen Automated, modular and

continuous regression testing

Focus: workflow tests, product
oriented semantic tests

Organizational Provision
(preventive)

Instruments (analytic)

Figure 3.2: SQA Modules

3.2.3 Responsibilities

The consistent implementation of quality assurance procedures is responsibly coordinated by the man-
aging board executive for products.

The development divisions are in authority for:
» The establishment, maintenance and checking of continuous testing procedures.

» The implementation of corresponding feedback.

12 VERIFICATION - Mechanical Benchmarks | SOFiSTiK 2022
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The product management is responsible for:

+ The coordination and execution of functional testing.

+ The integration of customer feedback into the QA process.
As a corporate activity is carried out:

 Continuous review of processes.

» The identification of supplemental objectives.

« Identification and implementation of possible optimizations.

Product
Management
Functional testing
Integrating customer

feedback

Development
Continuous Integration
Continuous Testing
Implementing feedback

Corporate Activity
Adaption of processes
Definition of objectives
Coordinated by managing board

Figure 3.3: SQA Responsibilities

3.2.4 Software Release Procedure

The defined minimum requirements for software releases of type Hotfix, Service Pack and Major Release
are illustrated by Figure 3.4. Approval of individual products is accomplished by the respective person
in charge; the overall approval is in authority of the managing board executive for products.

SOFiSTIK 2022 | VERiFICATION - Mechanical Benchmarks 13



SOFISTiK SQA Policy

Release
Requirements

Hotfix

Continuous Testing

Passed

Service Pack

Continuous Testing
Passed

Functional Testing
Passed

Major Release

Continuous Testing
Passed

Functional Testing
Passed

BETA Test Phase
Passed

Figure 3.4: Software Release Requirements

3.3 Instruments

3.3.1 CRM System

Each request from our customers is traced by means of a Customer Relation Management (CRM)
System assuring that no case will be lost. Detailed feedback to the customer is provided via this system.

Possible bug fixes or enhancements of the software are documented with version number and date
in corresponding log files. These log files are published via RSS-feed to our customers. In this way,
announcement of available software updates (service-pack or hotfix) is featured proactively. Moreover,
information is provided independent of and prior to the actual software update procedure.

Further sources of information are the electronic newsletter/ newsfeeds and the internet forum
(www.sofistik.de / www.sofistik.com).

3.3.2 Tracking System (internal)

For SOFiSTiK-internal management and coordination of the software development process - both re-
garding implementation of features and the fixing of detected bugs - a web-based tracking system is
adopted.

3.3.3 Continuous Integration — Continuous Testing

As mentioned above, the production chain is characterized by a high degree of automation. An important
concern is the realization of prompt feedback cycles featuring an immediate response regarding quality
of the current development state.
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N ) )
SOFISTiK SQA Policy 2 SOFIiSTIK
Automated Automated
Continuous Testing Continuous Integration
procedure procedure

Development/ PM
Assessing feedback
Committing modifications

Figure 3.5: Feedback cycle: Continuous Integration — Continuous Testing

Continuous integration denotes the automated process, assuring that all executed and committed mod-
ifications of the program’s code basis are directly integrated via rebuild into the internal testing environ-
ment.

Upon completion of the integration, the continuous testing procedure is triggered automatically. This
procedure executes a standardized testing scenario using the newly updated software. Test results are
prepared in form of compact test protocols allowing for quick assessment.

The executed tests are so-called regression tests. Regression tests examine by means of associated
reference solutions wether the conducted modifications of the code basis cause undesired performance
in other already tested parts of the program.

Together, continuous integration and continuous testing form the basis for a quality control that directly
accompanies the development process. This way, possibly required corrections can be initiated promptly.
SOFiSTiK has successfully implemented this procedure. Currently, the continuous test database com-
prises more than 3000 tests.

3.4 Additional Provisions

3.4.1 Training

As a special service to our customers, SOFiSTiK provides for comprehensive and individually tailored
training to support a qualified and responsible use of the software. This is complemented by offering a
variety of thematic workshops which are dedicated to specific engineering topics.

Itis the credo of SOFiSTiK that a high-quality product can only be created and maintained by highly qual-
ified personnel. Continuing education of the staff members is required by SOFiSTiK and it is supported
by an education program which involves both in- house trainings and provisions of external trainings on
a regular basis.

3.4.2 Academia Network

Arising questions are treated by an intense discussion with customers, authorities and scientists to find
the best interpretation.

SOFISTiK 2022 | VERIFICATION - Mechanical Benchmarks 15
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3.5 Disclaimer

Despite all efforts to achieve the highest possible degree of reliability, SOFiSTiK cannot assure that the
provided software is bug-free or that it will solve a particular problem in a way which is implied with the
opinion of the user in all details. Engineering skill is required when assessing the software results.
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4 BE1: Joint Deflection of Plane Truss

Overview
Element Type(s): TRUS
Analysis Type(s): STAT
Procedure(s):
Topic(s):
Module(s): ASE
Input file(s): truss.dat
4.1 Problem Description

The problem consists of a plane truss structure, as shown in Fig. 4.1. Determine the vertical deflection
at the free node 8.

o

7 8
3 7
6
11
3 2 5 9 13
1 2 4 B 8
AN 1 4 FA 10 12 i
Yp YP P

Figure 4.1: Problem Description

4.2 Reference Solution

The problem of determining the displacements of trusses can be treated in various ways. Popular among
engineers, is to apply energy methods, e.g. the method of virtual work or Castigliano’s theorem, to solve
problems involving slope and deflection, that are based on the conservation of energy principle, and
are more suitable for structures with complicated geometry such as trusses. Further information on this
topic can be found in numerous engineering books, dealing with structural analysis [1].

4.3 Model and Results

The general properties of the model [2] are defined in Table 4.1. The total width of the truss is 60 ft,
consisting of four spaces of 15 ft each, and the total height is 15 ft. The load is applied equally at the
three free nodes at the bottom of the truss. The results are presented in Table 4.2 and compared to the
reference example [2]. Fig. 4.2 shows the deflections and the deformed shape of the structure.

SOFISTiK 2022 | VERIFICATION - Mechanical Benchmarks 19


https://www.sofistik.de/documentation/2022/en/verification/_static/verification/zip/be1.zip

J

=32 : :
"::“ SOFIS TI K BE1: Joint Deflection of Plane Truss
Table 4.1: Model Properties
Material Properties Geometric Properties Loading
E=29103ksi ltotar =60 ft =18.288m P =20kip =89.0kN
=206842.773 MPa htotat =15ft=4.572m
v=0.3 lhb=04L1=7.5ft=2.286m
h=l=lg=lio=l=15ft=
4.572m
A1 =A4=2in2=12.90cm?
Ay =A11=A10=A12=1in’=
6.45 cm?
As =Ag =1.5in2 =9.68 cm?
A3 =Aeg=3in?2=19.35cm?
A7 =Ag=4in%?=25.81cm?
Table 4.2: Results
SOF. Ref. [2] ler| [%]
bg [mm] 69.11 69.09 0.036

Figure 4.2: Problem Description

4.4 Conclusion

This example verifies the deflection of trusses. It has been shown that the behaviour of the truss is
accurately captured. It should be noted that in the reference example [2] the deflection in inches was
rounded to two decimal places, which leads to a higher relative error in Table 4.2. When comparing the
SOFiSTIK result with an analytical solution rounded to four decimal places, the relative error decreases
t0 0.0004%.

4.5 Literature

[1] R. C. Hibbeler. Structural Analysis. 8th. Prentice Hall, 2012.
[2] J. C. McCormac. Structural Analysis. Wileys & Sons, 2007.
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5 BE2: Kinematic Coupling Conditions

Overview

Element Type(s): COUP
Analysis Type(s): STAT
Procedure(s):
Topic(s):
Module(s): SOFIMSHC, ASE
Input file(s): coupling.dat

5.1 Problem Description

This problem verifies the kinematic coupling conditions for a structural point. Each coupling condition is
tested on a pair of beams coupled with each other through structural points, as shown in Fig. 5.1. Four
different cases are considered and the deflections of the beams are determined and compared to the
analytical solution.

.&‘I//"//’:—/’;@
= _
.&—";‘:ﬂ

=
,f@
=

A
— 7.
Figure 5.1: Problem Description

5.2 Reference Solution

In this example the problem of coupling structural points is treated. Through the definition of kinematic
coupling conditions between structural points the constraint of one or multiple degrees of freedom is
allowed. The displacement values of the given structural point A’/ are defined according to the respective
displacement values of the referenced (or master-) node A. Various cases are possible in SOFiSTiK
for the coupling conditions. With the exception of the three conditions KPX, KPY and KPZ, which
only couple the corresponding displacement. e.g. ux = Uxo , all other coupling conditions satisfy the
mechanical equilibrium conditions by taking the real distances between the two connected points into
account, e.g. the conditions KPPX, KPPY, KPPZ correspond to the following expressions respectively

[3][4]:

Ux = Uxo + Pyo(Z— 20) — Pzo(Y — ¥o) (5.1)
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Uy = Uyo + §z0(X — X0) — Px0(Z — 20) (5.2)

Uz = Uzo + Pxo(Y — Yo) — Pyo(X — Xo) (5.3)

Mechanically they act like infinitely stiff structural members. A number of additional literals are provided
in SOFiSTiK which allow to define a combination of coupling relations. For example, a rigid connection
with hinged conditions at the reference node is described by

KP = KPPX + KPPY + KPPZ (5.4)

whereas

KF =KP+ KMX + KMY + KMZ = KPPX + KPPY + KPPZ + KMX + KMY + KMZ (5.5)

describes mechanically a rigid connection with clamped support at the reference node. Further informa-
tion on the topic are provided in SOFiSTiK manual of module SOFIMSHC [3].

5.3 Model and Results

The general properties of the model are defined in Table 5.1. All beams are of 4 m length and consist
of a standard rectangular cross-section and a standard concrete material. The structural points A and
A’ have a distance of 2 m in the axial direction. Four coupling conditions are considered :

* KPPX, where only the displacement in the global x direction is connected

» LPX, where only the displacement in the structural point’s local x direction is connected
» KP, where the displacements in x, y and z direction are connected

* KF, where the displacements and the rotations in x, y and z direction are connected

All cases are tested for four loadcases, i.e. a horizontal Py, a longitudinal Px, a vertical P; and a
rotational My.

Table 5.1: Model Properties

Material Properties Geometric Properties Loading

C30/45 lbeam =4 m P, =50.0 kN
h,=0.4m,b,=0.2m Px =—50.0 kN
h,,=0.3m,b,,=0.15m P, =50.0kN
(Xa”—Xxa)=2m My =10.0 kN

(yA// —yA) = O m

(zar—2za)=0m
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In the cases, where only a displacement is transferred in the vertical uz or horizontal direction uy , a
rotation results in the other direction. If for example, we consider a coupling of only the displacement
in the y direction, then a rotation of ¢, = 3uy/(2lpeam) Will also result as the effect of a prescribed
displacement of value uy at the beam tip A”.

Table 5.2: Results for KPPX Coupling Condition

Load Ux [mm]
Case SOF. Ref.
Py —0.107 -0.107

Table 5.3: Results for LPX Coupling Condition

Load uy [mm] ¢ [mrad]
Case SOF. Ref. SOF. Ref.
Py 165.284 165.284 —-61.919 -—-61.982

Table 5.4: Results for KP and KF Coupling Condition

Coupling KP KF
DOF / LC Py Px P, Py Py P, My
SOF. 0.0 —-0.107 0.0 0.0 —-0.107 0.0 0.0
Ux [mm]
Ref. 0.0 —-0.107 0.0 0.0 —-0.107 0.0 0.0
SOF.  165.284 0.0 0.0 49.325 0.0 0.0 0.0
uy [mm]j
Ref. 165.284 0.0 0.0 49.325 0.0 0.0 0.0
SOF. 0.0 0.0 41.528 0.0 0.0 12.531 0.0
uy [mmj
Ref. 0.0 0.0 41.528 0.0 0.0 12.531 0.0
SOF. 0.0 0.0 0.0 0.0 0.0 0.0 6.671
¢x [mrad]
Ref. 0.0 0.0 0.0 0.0 0.0 0.0 6.671
SOF. 0.0 0.0 15.510 0.0 0.0 0.200 0.0
¢y [mrad]
Ref. 0.0 0.0 15.573 0.0 0.0 0.200 0.0
SOF. —61.919 0.0 0.0 —-0.725 0.0 0.0 0.0
¢ [mrad]
Ref. —61.982 0.0 0.0 —-0.725 0.0 0.0 0.0

The results are presented in Tables 5.2 - 5.4, where they are compared to the reference results calcu-
lated with the formulas provided in Section 5.2. Due to the extent of the results only non zero values will
be presented in the result tables. Figures 5.2, 5.3 present the results for the KF coupling condition for
the load cases 1 to 4 for both displacements and rotations, respectively.
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Figure 5.2: Displacement Results for KF coupling for LC 1-4
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Figure 5.3: Rotation Results for KF coupling for LC 1-4
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5.4 Conclusion

This example verifies the coupling of structural points. It has been shown that the behaviour is accurately
captured.

5.5 Literature

[8] SOFIMSHC Manual: Geometric Modelling. Version 18-0. SOFiSTiK AG. OberschleiBheim, Ger-
many, 2017.

[4] SOFIMSHA Manual: Import and Export of Finite Elements and Beam Structures. Version 18-0.
SOFiSTiK AG. OberschleiBheim, Germany, 2017.
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6 BE3: Beam Stresses and Deflections

Overview

Element Type(s): B3D

Analysis Type(s): STAT

Procedure(s):

Topic(s):

Module(s): ASE

Input file(s): rect_beam.dat, |_beam.dat
6.1 Problem Description

A rectangular beam is supported as shown in Fig. 6.1 and loaded on the overhangs by a uniformly
distributed load q. Determine the maximum bending stress o in the middle portion of the beam and the
deflection § at the middle of the beam.

q q

Il ll

N\

<—a—>|4— [ —)T(—Q—)l

Figure 6.1: Beam structure

6.2 Reference Solution

The magnitude of the stresses at a cross-section is defined by the magnitude of the shearing force
and bending moment at that cross-section. Under pure bending, the maximum tensile and compressive
stresses occur in the outermost fibers. For any cross-section, which has its centroid at the middle of the
depth h, and for a linear elastic material behaviour, the maximum stresses occur for z = £ h/2 [5]:

Mh g Mh 61
(o = — an Omin =——=, .
max = — min T (6.1)

in which I, is the moment of inertia of the cross-section with respect to the neutral axis and M the bending
moment. For a beam overhanging equally at both supports with a uniformly distributed load applied at
the overhangs (Fig. 6.1), assuming Bernoulli beam theory, the deflection at the middle of the beam is:

qga?l2 M2
"~ 16EI  8EI'

(6.2)

where q is the value of the uniformly distributed load, a the length of the overhangs, [ the length of the
middle span and M the bending moment at the middle of the beam.
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6.3 Model and Results

The model is analysed for two different cross-sections, a rectangular and a general I-beam cross-section.
The properties are defined in Table 6.1. The results are presented in Table 6.2. As to be expected, the
analysis yields the same results for the maximum bending stress and deflection at the middle of the
beam for the two models. Figure 6.2 shows the distribution of the stresses along the cross-sections for
the two analysed examples. Figure 6.3 shows the deformed structure with the nodal displacements.

Table 6.1: Model Properties

Material Properties Geometric Properties Geometric Properties Loading
Rectangular I-beam

E =30000 MPa [=200mm [=200mm g=10kN/m
a=100mm b=16mm
h=30mm twep =2.174 mm
b=7mm tflange =2 mm
I,=1.575cm?* I,=1.575cm*

Table 6.2: Results

Rectangular I-beam Ref.
Omax [MPa] 47.619 47.620 47.619
6 [mm] 0.529 0.529 0.529

Figure 6.3: Deformed Structure
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6.4 Conclusion

This example adresses the computation of beam stresses and deflections. It has been shown that the
behaviour of the beam is captured with an excellent accuracy.

6.5 Literature

[5] S. Timoshenko. Strength of Materials, Part I, Elementary Theory and Problems. 2nd. D. Van Nos-
trand Co., Inc., 1940.
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7 BE4: Tie Rod with Lateral Loading

Overview

Element Type(s): B3D
Analysis Type(s): STAT, GNL
Procedure(s):
Topic(s):
Module(s): ASE
Input file(s): tie_rod.dat
7.1 Problem Description

A tie rod is subjected to the action of a tensile force N and a lateral load P applied at the middle as
shown in Fig. (7.1). Determine the maximum deflection émax, the slope 6 at the left-hand end and
the maximum bending moment Mqx. In addition, compare these three quantities for the case of the
unstiffned tie rod (N = 0).

P
X
Nj_ J, N
A - —%
i N

Figure 7.1: Tie Rod

7.2 Reference Solution

The combination of direct axial force and lateral load applied at a beam influences the reaction of the
structure. Assuming that the lateral force acts in one of the principal planes of the beam and that the
axial force is centrally applied by two equal and opposite forces, the expressions for the deflections can
be derived from the differential equations of the deflection curve of the beam [6]. Under tension, the
maximum deflections of a laterally loaded beam decrease whereas under compression they increase.
The moments of the structure are influenced accordingly.

For the simple problem of a beam with hinged ends, loaded by a single force P at the middle, the

maximum deflection at the middle is:

P
"~ 48EI

5max
where lis the lenght of the beam and EI its flexural rigidity. The slope 6 at both ends is:

P12
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The maximum value of the bending moment at the middle is:

Pl
Mmax = Z (7.3)

When now the structure (Fig. 7.1) is submitted to the action of tensile forces N in addition to the initial
lateral load P, the deflection at the middle becomes [6]:

P® u-— tanhu
48EI %u3

, (7.4)

5max =

where u? = NI2/4EI. The first factor in Eq. (7.4) represents the deflection produced by the lateral load
P acting alone. The second factor indicates in what proportion the deflection produced by P is magnified
by the axial tensile force N, respectively. When N is small, it approaches unity, which indicates that
under this condition the effect on the deflection of the axial force is negligible. The expressions for the
moment and the slopes can be derived accordingly [6].

7.3 Model and Results

The properties of the model are defined in Table 7.1 and the results are presented in Table 7.2. Fig. 7.2
shows the deformed structure under tension and lateral loading.

Table 7.1: Model Properties

Material Properties Geometric Properties Loading

E =30000 MPa [=2m P=0.1kN
h=30mm N=0.1kN
b=30mm

I=6.75x% 10~8 m*

Figure 7.2: Deformed Structure [mm]: N # O
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Table 7.2: Results
N=0 Ref. N # 0 Ref.
Omax [M] 0.00823 0.00823 0.00807 0.00807
Mmax [KNmM] 0.05000 0.05000 0.04919 0.04919
8[rad] 0.01235 0.01235 0.01210 0.01210

7.4 Conclusion

This example presents the influence of axial forces applied at a laterally loaded beam. The case of
a tie rod is examined and the maximum deflections and moment are derived. It has been shown that
the behaviour of a beam under the combination of direct axial force and lateral load can be adequately

captured.

7.5 Literature

[6] S. Timoshenko. Strength of Materials, Part I, Advanced Theory and Problems. 2nd. D. Van Nos-

trand Co., Inc., 1940.
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8 BES5: Bending of a T-beam

Overview

Element Type(s): B3D
Analysis Type(s): STAT
Procedure(s):
Topic(s):
Module(s): AQB, ASE
Input file(s): t_beam.dat
8.1 Problem Description

An asymmetric T-beam is supported as shown in Fig. 8.1 and subjected to uniform bending M. Deter-
mine the maximum tensile and compressive bending stresses.

X

Figure 8.1: Model Properties

8.2 Reference Solution

According to the discussion in Benchmark Example no. 3, it follows that the maximum tensile and
compressive stresses in a beam in pure bending are proportional to the distances of the most remote
fibers from the neutral axis of the cross-section. When the centroid of the cross-section is not at the
middle of the depth, as, for instance, in the case of a T-beam, let h; and h, denote the distances from
the neutral axis to the outermost fibers in the downward and upward directions (Fig. 8.1) respectively.
Then for a bending moment M, we obtain the maximum tensile and compressive stresses [5]:

Mzh Mzh
s and Omin =— z 2. (8.1)
Iz IZ

Omax =

8.3 Model and Results

The properties of the model are defined in Table 8.1. Distances from the centroid to the top and bottom
of the beam are calculated as 14 cm and 6 cm respectively. The results are presented in Table 8.2.
Figure 8.2 shows the distribution of the stresses along the cross-section.
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Table 8.1: Model Properties
Material Properties Geometric Properties Loading
E=30000 MPa [=1m M;=100kNm
h=20cm
hi=6cm,h,=14cm
b=9cm
tweb = 1.5 cm
tflange =4 Ccm
I, =2000cm?*
Table 8.2: Results
SOF. Ref.
Omax [MPa] 300 300
Omin [MPa] —700 -700

[F [P

Figure 8.2: Distribution of Stresses

8.4 Conclusion

This example shows the derivation of stresses for beams with asymmetric cross-section in which the
centroid of the cross-section is not at the middle of the depth. It has been shown that the behaviour of
the beam is captured with an excellent accuracy.

8.5 Literature

[5] S. Timoshenko. Strength of Materials, Part |, Elementary Theory and Problems. 2nd. D. Van Nos-
trand Co., Inc., 1940.
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9 BEG6: Warping Torsion Bar

Overview

Element Type(s): B3D
Analysis Type(s): STAT
Procedure(s):
Topic(s):
Module(s): ASE
Input file(s): warping.dat
9.1 Problem Description

A cantilever I-bar is fixed at both ends, as shown in Fig. 9.1, and subjected to a uniformly distributed
torqgue m [7]. Determine the angle of twist ¢ at the midspan.

51
=

i
VAR
kikiirinininir|

Figure 9.1: An I-bar with Uniformly Distributed Torque

9.2 Reference Solution

In mechanics, torsion is the twisting of a structure due to an applied torque. There are two types of
torsion: St. Venant torsion and warping torsion. St. Venant torsion exists always when an element is
twisted, whereas the warping torsion occurs additionally under specific conditions. The warping of a
section depends on the section geometry which means that there exist warping-free, such as circular,
and warping-restrained sections. St. Venant torsion is based on the assumption that either the cross-
section is warping-free or that the warping is not constrained. If at least one of these conditions is not
met then the warping torsion appears [6].

Figure 9.2: Circular Shaft

A member undergoing torsion will rotate about its shear center through an angle of ¢. Consider a circular
shaft that is attached to a fixed support at one end. If a torque T is applied to the other end, the shaft
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will twist, with its free end rotating through an angle ¢ called the angle of twist [8]:

TL

¢:G_IT'

(9.1)

where G is the shear modulus and I7 the torsional moment of inertia. For a circular shaft subjected to
torsion, each cross-section rotates along the shaft as a solid rigid slab (warping-free cross-section). The
torsional moment resisted by the cross-section is:

d
T= GIT—¢, (9.2)
ax

For most cross-sections, e.g. non-circular, this rotation of the cross-section is accompanied by warping.
Then the total torsional moment resisted by the cross-section becomes the sum of the pure torsion
and warping torsion [9]. The stresses induced on the member is then classified into three categories:
torsional shear stress, warping shear stress and warping normal stress. For example, when a bar of an
I-cross-section is subjected to torsion, then the flanges of the cross-section experience bending in the
flange planes. This means that torsion induces bending about the strong axis of the flanges. When the
tendency for the cross-section to warp freely is prevented or restrained, it causes stresses to develop.
The torque that the cross-section carries by bending is:

d3¢

where ECpy, is the warping torsion stiffness. Furthermore, in warping torsion theory the bimoment is

defined as an auxiliary quantity. The objective is to introduce a degree of freedom for beam elements
that represents the torque due to restrained warping. The bimoment M, is defined as:

d
Mg, = ECy— (9.4)

It should be noted, that the bimoment itself is not measurable, however it serves as a convenient param-
eter to quantify this prevention of warping.

Figure 9.3: The Warping Torsion Problem

Fig. 9.3 (a) shows the warping torsion problem of a bar subjected to a distributed external torque. The
differential equation governing the warping torsion problem, for a constant cross-section, becomes [10]:
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d*¢ d?¢
ECy—: —GIr—= =mT, 9.5
M T2 T (9.9)
where mt the distributed torque along the bar. The natural boundary conditions are:
d?¢
My =ECy—=, z=0orl (9.6)
dx?
and
3¢ de
—ECM—+GIT— M, z=0orl (9.7)
ax3 ax

where Mt is the concentrated end torque and M, the bimoment. Introducing A, the so called decay
factor, in the above equation, and a simplified notation for the derivatives of ¢, we obtain:

111 mT

¢ — 229" (9.8)

The solution of the warping torsion equation depends on the type of the torsional load and the kinematic
boundary conditions, especially the amount of prevention of the warping. The complete solution system
of Eq. 9.8, for the load type given in Fig. 9.3 (c), is thus:

C1 C> 1 1
—smh)\x+—cosh)\x+C X+ Cs— ——(mMo + —=m1—)x2 9.9
¢= 32 32 3 ‘= 26n (mo 3 ) (9.9)
G ) 9.10)
= X .
¢ Iy l (
” 1 X
¢ =Ci1sinhAx+ CacoshAx— —(mo+mi1-) (9.11)
GIt l
ma
q) = CiAcoshAx + CoAsinh Ax — T (9.12)
T

The values of the constants C; to C4 can be derived with respect to the kinematic boundary conditions of
the problem. For the case of warping-free sections, where Cy = 0, the differential equation is shortened,
leading to the St. Venant torsion problem.

9.3 Model and Results

The properties of the analysed model, are defined in Table 9.1. The corresponding results are presented
in Table 9.2. Figure 9.4 shows the deformed shape of the structure and the angle of twist.
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Table 9.1: Model Properties
Material Properties Cross-sectional Properties Loading
E=217396.3331684 N/mm? [=1m mr=1Nmm/mm
G =81386.6878 N/mm?2 h=80mm
v=0.33557673 t=2mm
b=40mm
Cm =0.323 x 108 mm®
It =431.979 mm*
Table 9.2: Results
Twist in x-direction Ref. [7]
¢x [mrad] 0.329659 0.329262
\\\\Qx

Figure 9.4: Deformed Stucture

9.4 Conclusion

This example presents the warping torsion problem. The total torsional moment resisted by the cross-
section is the sum of that due to pure torsion, which is always present, and that due to warping. It has
been shown that the behaviour of the beam for warping is captured correctly.

9.5 Literature

[6] S. Timoshenko. Strength of Materials, Part Il, Advanced Theory and Problems. 2nd. D. Van Nos-
trand Co., Inc., 1940.

[7] C-N. Chen. “The Warping Torsion of a Bar Model of the Differential Quadrature Element Method”.
In: Computers and Structures 66.2-3 (1998), pp. 249-257.

[8] F.P. Beer, E.R. Johnston, and J.T. DeWolf. Mechanics of Materials. 4th. McGraw-Hill, 2006.

[9] P. Seaburg and C.J. Carter. Steel Design Guide Series 9: Torsional Analysis of Structural Steel
Members. AISC. 2003.

[10] C. Petersen. Stahlbau. 2nd. Vieweg, 1990.
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Overview

Element Type(s): B3D, SH3D

Analysis Type(s): STAT, GNL

Procedure(s): LSTP

Topic(s):

Module(s): ASE

Input file(s): beam_elem.dat, quad_elem.dat
10.1 Problem Description

A cantilever beam is supported as shown in Fig. 10.1. The beam is subjected to a total vertical load,
applied at the tip of the cantilever, which should cause the tip to deflect significantly. The determination
of the non-dimensional tip deflections ratios are determined.

Figure 10.1: Model Properties

10.2 Reference Solution

The classical problem of deflection of a cantilever beam of linear elastic material, under the action
of an external vertical concentrated load at the free end, is analysed (Fig. 10.2). The solution for
large deflection of a cantilever beam cannot be obtained from elementary beam theory since basic
assumptions are no longer valid. The elementary theory includes specific simplifications e.g. in the
consideration of curvature derivatives, and provides no correction for the shortening of the moment arm
as the loaded end of the beam deflects. For large finite loads, it gives deflections greater than the length
of the beam [11].

Figure 10.2: Problem Definition

The mathematical treatment of the equilibrium of cantilever beams does not involve great difficulty. Nev-
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ertheless, unless small deflections are considered, an analytical solution does not exist, since for large
deflections a differential equation with nonlinear terms must be solved. The problem is said to involve
geometrical nonlinearity [12]. Therefore in order to account for this nonlinear term, third order theory is
performed, where the equilibrium is established at the deformed configuration (geometrically nonlinear
analysis).

10.3 Model and Results

A circular pipe with cross-section of outer diameter 0.2 m and wall thickness 0.01 m is used, so that
the beam is moderately slender. This type of problem becomes considerably more difficult numerically
as the slenderness ratio increases [13]. The finite element model consists of twenty elements. The
properties of the model are defined in Table 10.1.

Table 10.1: Model Properties

Material Properties Geometric Properties Loading
E=100MPa [=10m P=269.35N
D=0.2m
t=0.01m

As an alternative, the structure is analysed with quad plane elements with a cross-section of the same
stiffness as the circular, in order to achieve the same results and compare the behaviour of the two types
of elements. The quad cross-section has a width of 0.3 m and a thickness of 0.10261 m, and therefore
the same moment of inertia I = 2.701 m™> as the one of the circular cross-section. Results for both
models are presented in Table 10.2. Figure 10.3 shows the deflection of the beam for the two analysed
models. Figure 10.4 presents the results, in terms of the motion of the tip of the cantilever, where they
are compared to the exact solution for the inextensible beam, as given by Bisshopp and Drucker [11].

Figure 10.3: Deformed structure: a) Beam elements b) Quad elements
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Table 10.2: Results

Beam Quad
6[m] 8.113 8.102
Al m] 5.545 5.539
load factor
1.0 \ ,
0.9
\ L—|A 5
0.8 A I
0.7 \\ /
0.6
05 x’\ /
N/
0.3 \‘\
02 N
e N
01 A
e
0.0 .0 1.0 2.0 3.0 4.0 5.0 .0 7.0 0 9.0 10.0
diplacement [m]
load factor
1.0 \ ,
0.9 L _ A 5
0.8 /
0.7 \\ /
0.6
\_/
\/
03 \
0.2 \&\
0.1 \
0.0 /
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diplacement [m]

Figure 10.4: Load - Deflection: (a). Beam elements (b). Quad elements
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10.4 Conclusion

This benchmark shows the classical problem of a cantilever beam undergoing large deformations under
the action of a vertical load at the tip. Results are presented in terms of the motion of the tip of the
cantilever where the accuracy of the solution is apparent.

10.5 Literature

[11] K. E. Bisshopp and D. C. Drucker. “Large Deflection of Cantilever Beams”. In: Quarterly of Applied
Mathematics 3 (1945), pp. 272-275.

[12] T. Beléndez, C. Neipp, and A. Beléndez. “Large and Small Deflections of a Cantilever Beam”. In:
European Journal of Physics 23.3 (2002), pp. 371-379.

[13] Abaqus Benchmarks Manual 6.10. Dassault Systémes Simulia Corp. 2010.
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Element Type(s): B3D, SH3D
Analysis Type(s): STAT, GNL
Procedure(s): LSTP
Topic(s):
Module(s): ASE
Input file(s): moment_beam.dat, moment_quad.dat
11.1 Problem Description

The cantilever beam of Benchmark Example No. 7 is analysed here for a moment load, as shown in Fig.
11.1, with both beam and quad plane elements. The accuracy of the elements is evaluated through the
deformed shape of the beam retrieved by limit load iteration procedure.

— [ — |

Figure 11.1: Model Properties

11.2 Reference Solution

The classical problem of deflection of a cantilever beam of linear elastic material, is here extended for
the case of a moment applied at the beam tip. The concentrated moment causes the beam to wind
around itself, i.e. deflect upwards and bend towards the built-in end. The analytical solution can be
derived from the fundamental Bernoulli-Euler theory, which states that the curvature of the beam at any
point is proportional to the bending moment at that point [14]. For the case of pure bending, the beam
will bend into a circular arc of curvature R

R = 11.1
=w (11.1)
and will wind n times around itself [13]
ML
— = 27N, (11.2)
EI

where I is the moment of inertia, E the Elasticity modulus and M the concentrated moment applied at
the tip.

11.3 Model and Results

The properties of the two models analysed are defined in Table 11.1. For the moment load, the deformed
shape of the structure for quad elements at various increments throughout the steps, are shown in Fig.
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11.2. According to the analytical solution and the moment load applied, the cantilever is expected to
wind around itself n = 2.

Table 11.1: Model Properties

Material Properties Geometric Properties ~ Geometric Properties Loading
Beam elements Quad elements

E=100MPa [=10m [=10m M=3.38478kNm
D=0.2m B=0.3m
t=0.01m t=0.10261m

Figure 11.2: Deformed Structure - Quad Elements

o

Figure 11.3: Final Deformed Shape of Cantilever with Quad Elements

Figure 11.4 presents the load - deflection curve for the horizontal and vertical direction for the two
cases. From the final deformed shape of the beam (Fig. 11.3), it is evident that the cantilever achieves
n = 2, which can also be observed at the second load-deflection curve where the vertical displacement
becomes zero twice.
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Figure 11.4: Load - Deflection Curve

114 Conclusion

This benchmark shows the classical problem of a cantilever beam undergoing large deformations under
the action of a moment load applied at the tip. The accuracy of the deformation solution for the quad
and beam elements is evident.

11.5 Literature

[13] Abaqus Benchmarks Manual 6.10. Dassault Systémes Simulia Corp. 2010.
[14] A. A. Becker. Background to Finite Element Analysis of Geometric Non-linearity Benchmarks.
Tech. rep. NAFEMS, 1998.
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12 BE9: Verification of Beam and Section Types |

Overview

Element Type(s): B3D

Analysis Type(s): STAT

Procedure(s):

Topic(s):

Module(s): AQUA

Input file(s): cross_sections_FEM.dat,cross_sections BEM.dat
12.1 Problem Description

In this Benchmark different cross-section types are investigated, in order to test the properties of each
cross-section associated with their definition in AQUA module. The analysed non-tabulated and tabu-
lated cross sections are shown in Figures 12.1 and 12.2, respectively.

(1) SQUARE (2) RECTANGLE (3) CIRCLE (4) PIPE (5) T-BEAM
e[l ]
i 100 .
1 T
E 3 10
[2]
100 100 100 100
; \ R , \ ,
1 i 1 1 1 i
(6) I-BEAM 7) SQUARE BOX __(8) SQUARE BOX OPEN 9) RECTANGLE BOX
[=]
3 s 10| of | 10 - 10
10}
[=] 1L
i 100 . . 100 . . 100 . . 200 .
1 i T 1 1 i t +
. (10) C-BEAM _ (11) L-BEAM
10
8 8 10

200 , . 100
4

Figure 12.1: Non-tabulated Cross Sections
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(12) L 100 10 (13) 1100 (14) UPE 100 (15) IPE 400
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Figure 12.2: Tabulated Cross Sections

12.2 Reference Solution

The important values of a cross-section for the simple cases of bending and torsion are the moment of
inertia and the torsional moment, respectively. The analytical solution for the moment of inertia I, with
respect to y axis is [5]:

Iy=J Z2dA, (12.1)
A

in which each element of area dA is multiplied by the square of its distance from the z-axis and the
integration is extended over the cross-sectional area A of the beam (Fig. 12.3). The torsional moment
It is more complicated to compute and depends on the cross-sections geometry. For circular cross-
sections is:

I = f r2da, (12.2)
A

For thick-walled non-circular cross-sections, it depends on the warping function. Tabulated formulas are
given in all relevant handbooks for the most common geometries [15]. For closed thin-walled non-circular
cross-sections It is [10]:

4A2

n
Zi:lt_l,
and for open thin-walled non-circular cross-sections is:
1 n
Ir==) sit3, 12.4
T 3;1 it; (12.4)

where Apy, is the area enclosed from the center line of the wall (Fig. 12.3), and t;, s; the dimensions of
the parts from which the cross-section consists of. For the specific case of an I-cross-section, another
approximate formula can be utilised, as defined by Petersen [10]:

1 t\ 1 s .
Ir=2_bt (1—0.6305)+§(h—2t)s +2aD% (12.5)

where s, t and D are described in Fig. 12.3 and o is extracted from the corresponding diagram, given
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in [10], w.r.t. the cross-section properties. For the same cross-section but according to Gensichen, I7 is
accordingly computed as:

1, ty 1 5 s (5 +¢2
Ir=2-bt3(1-0.630— |+ = (h—2t) s>+ 0.29 - | 2—— (12.6)
3 b) 3 t t
> ¥ b Jlr
; ]
dA h
2 i
{§ tlIJ,

Figure 12.3: Cross-Sectional Properties

12.3 Model and Results

The properties of different cross-sections, analysed in this example, are defined in Table 12.1. The cross-
sections types are modelled in various ways in AQUA and compared. For differentiation between them,
the modelling type is specified next to the name of each cross-section. The cross-sectional properties
of the thick walled sections are computed by implementing the finite element method (FEM).

Table 12.1: Cross-Sections Properties

Material Properties Cross-sectional Properties
E =30MPa b=100mm
v=0.3 h=100mm

t=10mm

D=100mm

Table 12.2: Results

I, [cm?*] e/ It [cm*] el
Type SOF. Ref. [%] SOF. Ref. [%]
(1) Square -srec 833.33 833.33 0.00 1405.78 1400.00 (12.4) 0.41
(2) Rectangle -srec 0.83 0.83 0.00 3.12 3.13 (12.4) 0.22
(3) Circle -scit 490.87 490.87 0.00  981.75 981.75(12.4) 0.00
(3) Circle -tube 490.87 490.87 0.00  981.75 981.75(12.4) 0.00
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Table 12.2: (continued)

I, [cm*] e/ It [cm?*] el
Type SOF. Ref. [%] SOF. Ref. [%]
(4) Pipe -scit 289.81 289.81 0.00 579.62 579.62(12.4) 0.00
(4) Pipe -tube 289.81 289.81 0.00 579.62 579.62(12.4) 0.00
(5) T-beam -poly 180.00 180.00 0.00 6.37 6.33(12.4) 0.63
(5) T-beam -plat 181.37 182.82 0.79 6.50 6.50 (12.4) 0.00
(6) I-beam -poly 449.33 449.33 0.00 9.67 9.33(12.4) 3.64

9.62 (12.6) 0.52
9.21(12.5) 4.99

(6) I-beam -plat 465.75 467.42 0.36 9.67 9.33(124) 3.64
(6) lI-beam -weld 447.67 449.33 0.37 9.33 9.33(12.4) 0.00
(7) Square box -poly 492.00 492.00 0.00 796.78 729.00 (12.4) 9.30

772.341  729.00 (12.4) 5.95

(7) Square box -plat 486.00 487.50 0.31 741.00 729.00(12.4) 1.65
(8) Square box open - 486.00 487.50 0.31 11.98 12.00 (12.4) 0.17
plat

(9) Rectang. box -poly 898.67 898.67 0.00 2221.56 2088.64(12.4) 6.36

2168.441 2088.64 (12.4) 3.82

(9) Rectang. box -plat 891.00 889.17 0.21 2107.31 2088.64 (12.4) 0.89
(10) C-beam -poly 2292.67 2292.67 0.00 12.76 12.67 (12.4) 0.73
(10) C-beam -plat 2286.33 2287.92 0.07 12.67 12.67 (124) 0.0
(11) L-beam -poly 180.00 180.00 0.00 6.26 6.33 (12.4) 1.22
(11) L-beam -weld 179.25 180.00 0.42 6.33 6.33 (12.4) 0.0
(11) L-beam -plat 178.62 179.40 0.44 6.33 6.33 (124) 0.0
(12) L 100 10 (tabu- 176.66 177.0[16] 0.19 6.85 6.33[17] 8.19
lated)
(13) 1100 (tabulated) 170.38 171.0[16] 0.36 1.52 1.60[16] 4.93

170.3[17] 0.05 1.511[17] 0.67
(14) UPE 100 (tabu- 206.90 207.0[16] 0.05 2.02 1.99[16] 1.56
lated)

206.9[17] 0.00 2.01[17] 0.55
(15) IPE 400 (tabu- 23129.58 23130[16] 0.00 50.50 51.40[16] 1.75
lated)
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Table 12.2: (continued)

I, [cm*] e/ It [cm?*] el
Type SOF. Ref. [%] SOF. Ref. [%]
23128[17] 0.01 50.41[17] 0.18

1 Calculated with a finer mesh: HDIV 2[mm]

From the results in Table 12.2 we can see that for the definition of general cross-sections the use of
-POLY option gives the exact values for I,. When evaluating the results of the torsional moment of
inertia I, it has to be taken into consideration, that the presented reference solutions in Sect. 12.2,
for all non-circular cross-sections, are approximate and various assumptions are taken according to the
adopted theory. For the case of the I-beam, it is observed in Table 12.2, that the relative error ranges
between 4.99 % and 0.52 %.

For the definition of thin-walled cross-sections the use of -PLAT gives very good results for It whereas for
the determination of I, some deviations appear. This is due to the fact that in order for the cross-section
to be connected for shear, some parts of the plates overlap at the connections giving an additional
moment of inertia around the y-axis. This can be seen at Fig. 12.4 for the | beam. It can be avoided if
the -PLAT option is used without overlapping of parts but in combination with -WELD in order to ensure
the proper connection of the plates. This can be seen from the results for the I- and L-beam which are
analysed for the three options -POLY, -PLAT, -PLAT and -WELD.

| || = | |
%) %) %)
|| 1 | | | |
-POLY -PLAT -PLAT and -WELD

Figure 12.4: Definition types of I-beam

12.3.1 Comparison of numerical approaches for thick walled cross sections

The torsional moment of inertia is additionally calculated for the thick walled non-circular cross sections
by using the boundary element method (BEM). The computed values are compared with the results
obtained from the FEM method and with the reference values in Table 12.3.

Table 12.3: Torsional moment of inertia calculated by using the boundary element method (BEM) and
the finite element method (FEM)

It [cm*] ler| BEM/FEM
Type SOF. BEM  SOF. FEM Ref. [%]
(5) T-beam -poly 6.45 6.37 6.33 (12.4) 1.89/0.63
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Table 12.3: (continued)

Ir [em*] ler| BEM/FEM
Type SOF. BEM  SOF. FEM Ref. [%]
(6) I-beam -poly 9.52 9.67 9.33 (12.4) 2.00/3.64
9.62 (12.6) 1.04/0.52
9.21(12.5) 3.36/4.99
(7) Square box -poly 771.96 772.341 729.00 (12.4) 5.89/5.94
(9) Rectang. box -poly 2171.77 2168.441 2088.64 (12.4) 3.98/3.82
(10) C-beam -poly 13.29 12.76 12.67 (12.4) 4.90/0.73
(11) L-beam -poly 6.36 6.26 6.33 (12.4) 0.36/1.22
(12) L 100 10 (tabulated) 6.96 6.85 6.33[17] 9.90/8.19
(13) 1100 (tabulated) 1.51 1.52 1.60 [16] 5.55/4.93
1.511[17] 0.01/0.67
(14) UPE 100 (tabulated) 2.04 2.02 1.99[16] 2.76/1.56
2.01[17] 1.74/0.55
(15) IPE 400 (tabulated) 51.04 50.50 51.40 [16] 0.71/1.75
50.41 [17] 1.24/0.18

1 Calculated with a finer mesh: HDIV 2[mm]

12.3.2 Convergence of the thick walled sections (FEM-BEM) in regard to the
thin-walled theory

The reference values for the open sections |, L, C, T-beam are computed with respect to the thin-walled
theory reference solution (Eq. 12.4). Therefore for the calculated values with -POLY (FEM and BEM),
which do not correspond to the thin-walled theory, deviations appear. If we now make a convergence
study, for the case of the I-beam, decreasing the thickness of the cross-section and comparing it to
the thin-walled reference solution, we will observe that the deviation is vanishing as we approach even
thinner members. This is presented in Fig. 12.5 for an I-beam, where the absolute difference of the
calculated from the reference value is depicted for the decreasing thickness values. The results obtained
with -POLY (FEM) are presented in Fig. 12.5 with three different mesh sizes: default mesh, 25% and
50%finer mesh.
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—o— -POLY boundary element method

—— -POLY finite element method (default mesh)
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Figure 12.5: Convergence of |-beam

For the case of open thin-walled non-circular cross-sections, modelled with -PLAT, we can observe that
It matches exactly the reference solution. For closed thin-walled non-circular cross-sections though,
some deviations arise. If we take a closer look at the case of the square box, at first glance it appears to
be not accurate enough, since the calculated value is 741.00 cm* and the reference is 729.00 cm?
(Table 12.2). The difference between them is 741.00 - 729.00 = 12 cm?, which corresponds to the
reference value of the open square box. This is due to the fact, that the reference solution for this type of
sections given by Eq. 12.3, corresponds to the thin-walled theory and assumes a constant distribution
of shear stresses over the thickness of the cross-section. However, SOFiSTiK assumes a generalised
thin-walled theory, where the shear stresses due to torsion, are distributed linearly across the thickness,
as shown in Fig. 12.6, and thus holds:

(12.7)

ITgeneralised thin—walled theory = ITclosed,SOFiSTiK = ITclosed, thin—walled theory + ITopen,thin—walled theory

5 O5i5 5 5 5

)

¢ ¢ ¢ ¢ ¢ ¢

Open Closed

\

+
) T
U

\

5 5 5 5

5 5 5 5
¢ ¢J1¢ ¢

Figure 12.6: Distribution of Stresses
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Eq. 12.7 is satisfied exactly for the square box cross-section and it can be visualised in Fig. 12.7 by

the purple line for decreasing thicknesses, whereas the blue line denotes the deviation of the calculated
values with respect to the IT,,ceq thin-watted theory -

For the same cross-section, but now modelled with -POLY, it is evident that the difference from the
reference solution is larger, reaching the value of 5.89 %, as presented by the green line. This is due to
the fact that except from the difference in the stresses consideration, as explained above, the thin-walled
assumption is also engaged. If we do a convergence study for this cross-section, and compared it to the
one modelled with -PLAT, represented by the red line, we will observe that as the thickness decreases
the deviation curves gradually coincide.

6 | T T T
-POLY w.r.t. Thin-walled Theory (4)
—m— -POLY w.r.t. -PLAT
—+— -PLAT w.r.t. Thin-walled Theory (4)
5| —e— -PLAT w.r.t. Generalised Thin-walled Theory (7)

Deviation [%]

10 9 8 7 6 5 4 3 2 1
Thickness [mm]

Figure 12.7: Convergence of Square Box

12.4 Conclusion

This example presents the different cross-sections and their properties according to their definition in
AQUA. It has been shown that the properties of the cross-sections can be adequately captured irrele-
vantly of their definition with small deviations from the exact solution.

12.5 Literature

[5] S. Timoshenko. Strength of Materials, Part I, Elementary Theory and Problems. 2nd. D. Van Nos-
trand Co., Inc., 1940.
[10] C. Petersen. Stahlbau. 2nd. Vieweg, 1990.
[15] K. Holschemacher. Entwurfs- und Berechnungstafeln fiir Bauingenieure. 3rd. Bauwerk, 2007.
[16] M. Schneider-Blrger. Stahlbau-Profile. 24th. Verlag Stahleisen, 2004.

[17] R. Kindmann, M. Kraus, and H. J. Niebuhr. Stahlbau Kompakt, Bemessungshilfen, Profiltabellen.
Verlag Stahleisen, 2006.
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13 BE10: Verification of Beam and Section Types Il

Overview

Element Type(s): B3D

Analysis Type(s): STAT

Procedure(s):

Topic(s):

Module(s): ASE

Input file(s): cross_sections_ii_FEM.dat, cross_sections_ii_BEM.dat
13.1 Problem Description

The problem consists of a cantilever beam as shown in Fig. 13.1. For the first case analysed, a trans-
verse load is applied at the end of the beam. For the second case, a moment is applied around the x
axis. The various cross-section types analysed in Benchmark Example 9 are used, in order to test the
behaviour of the beam associated with each of the section definitions.

Iy

=
(3 — |,

Figure 13.1: Problem Description

13.2 Reference Solution

For a Bernoulli beam and a linear elastic material behaviour, the maximum deflection 6 qx of the can-
tilever, under the action of a transverse load P, occurs at the tip and is [15]:

PL 13.1
max — 3EI/ ( . )
and the rotation ¢,
PL? 13.2
¢z = > (13.2)
For the case of the moment M, applied at the x-axis the angle of twist ¢ is [10]:
¢ e (13.3)
T Grr’ '

where G is the shear modulus, EI the flexural rigidity and I7 the torsional moment.
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13.3 Model and Results

The properties of the model and the cross-sections analysed, are defined in Table 13.1. For all cross-
sections the shear deformation areas A, and A are given equal to zero, in order to consider a Bernoulli
beam formulation which doesn’t account for shear deformations.

Table 13.1: Model Properties

Material Properties Cross-sectional Loading
Properties

E =30MPa L=1m P=1kN
v=0.3 h=100mm M=1kNm
t=10mm
b=100mm
D=100mm

Table 13.2: Results Case 1

uy [m] el ¢z [mrad] e
Type SOF. Ref. [%] SOF. Ref. [%]
square -srec 1.333 1.333 0.00 2.000 2.000 0.00
rectangular -srec 1333.333 1333.333 0.00 2000.000 2000.000 0.00
circul -scit 2.264 2.264 0.00 3.395 3.395 0.00
circul -tube 2.264 2.264 0.00 3.395 3.395 0.00
pipe -scit 3.834 3.834 0.00 5.751 5.751 0.00
pipe -tube 3.834 3.834 0.00 5.751 5.751 0.00
Tbeam -poly 6.173 6.173 0.00 9.259 9.259 0.00
Tbeam -plat 6.126 6.078 0.80 9.189 9.116 0.80
Ibeam -poly 2.473 2.473 0.00 3.709 3.709 0.00
Ibeam -plat 2.386 2.377 0.36 3.578 3.566 0.36
Ibeam -weld 2.482 2.473 0.37 3.723 3.709 0.37
square box -poly 2.258 2.258 0.00 3.388 3.388 0.00
square box -plat 2.286 2.279 0.31 3.429 3.419 0.31
square box open -plat 2.286 2.279 0.31 3.429 3.419 0.31
rectang. box -poly 1.236 1.236 0.00 1.855 1.855 0.00
rectang. box -plat 1.247 1.250 0.21 1.871 1.874 0.21
C-beam -poly 0.485 0.485 0.00 0.727 0.727 0.00
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Table 13.2: (continued)

uy [m]  ler| ¢z [mrad] e
Type SOF. Ref. [%] SOF. Ref. [%]
C-beam -plat 0.486 0.486 0.07 0.729 0.728 0.07
L-beam -poly 6.173 6.173 0.00 9.259 9.259 0.00
L-beam -weld 6.199 6.173 0.42 9.298 9.259 0.42
L-beam -plat 6.221 6.193 0.44 9.331 9.290 0.44

The cross-sections types are modelled in various ways in AQUA as shown in Benchmark Example 9.
The results are presented in Table 13.2 for the case of the transverse load P and in Table 13.3 for
the case of the moment M. For the non-circular cross sections modelled with -POLY, both the results
calculated with the boundary element method (BEM) and the finite element method (FEM) are presented
in Table 13.3. It should be noted, that the calculated angle of twist for the square and rectangular box
cross section modelled with -POLY (FEM), denoted with a star in Table 13.3, corresponds to a relatively
coarse default finite element mesh. For the investigated box sections with relatively thin walls, a better
approximation in regard to the reference values can be obtained by implementing a finer element mesh.

Table 13.3: Results Case 2

¢x [mrad] el
Type SOF. Ref. [%]
square -srec 6.165 6.190 0.41
rectangular -srec 2774.886 2768.903 0.22
circul -scit 8.828 8.828 0.00
circul -tube 8.828 8.828 0.00
pipe -scit 14.952 14.952 0.00
pipe -tube 14.952 14.952 0.00
Tbeam -poly (BEM) 1343.070 1368.421 1.85
Tbeam -poly (FEM) 1359.899 0.62
Tbeam -plat 1333.333 1333.333 0.00
Ibeam -poly (BEM) 910.375 928.571 1.96
Ibeam -poly (FEM) 895.95 3.51
Ibeam -plat 896.552 896.552 0.00
lbeam -weld 928.571 928.571 0.00
square box -poly (BEM) 11.227 11.888 5.56
square box -poly (FEM - default mesh) 10.877x 8.51
square box -poly (FEM - finer mesh: HDIV 2 [mm]) 11.221 5.61
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Table 13.3: (continued)

¢x [mrad] e
Type SOF. Ref. [%]
square box -plat 11.696 11.888 1.62
square box open -plat 723.428 722.222 0.17
rectang. box -poly (BEM) 3.991 4,149 3.83
rectang. box -poly (FEM - default mesh) 3.901x 5.98
rectang. box -poly (FEM - finer mesh: HDIV 2 [mm]) 3.998 3.64
rectang. box -plat 4,113 4,149 0.89
C-beam -poly (BEM) 652.274 684.211 4.67
C-beam -poly (FEM) 679.255 0.72
C-beam -plat 684.210 684.211 0.00
L-beam -poly (BEM) 1363.46 1368.421 0.36
L-beam -poly (FEM) 1385.289 1368.421 1.23
L-beam -weld 1368.421 1368.421 0.00
L-beam -plat 1368.421 1368.421 0.00

From the above results, and with respect to the results of Benchmark Example 9, we can see that the
differences are a direct influence of the calculations of the properties of the cross-sections according to
their definition in AQUA, and are not associated to the beam formulation. This can also be verified, if
instead of, e.g. the reference value for Iy, the calculated value is used Iy, in Eq. 13.1 . Then the
error is eliminated for all the cross-sections types.

13.4 Conclusion

This example presents the influence of the cross-sections types, for the case of a simple cantilever
beam. It has been shown that the behaviour of the beam is accurately captured.

13.5 Literature

[10] C. Petersen. Stahlbau. 2nd. Vieweg, 1990.
[15] K. Holschemacher. Entwurfs- und Berechnungstafeln fiir Bauingenieure. 3rd. Bauwerk, 2007.
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14 BE11: Plastification of a Rectangular Beam

Overview

Element Type(s): B3D, BF2D, SH3D

Analysis Type(s): STAT, MNL

Procedure(s): LSTP

Topic(s):

Module(s): ASE, STAR2, TALPA

Input file(s): beam_star2.dat, fiber_beam.dat, quad.dat
14.1 Problem Description

The problem consists of a rectangular cantilever beam, loaded in pure bending as shown in Fig. 14.1.
The model [18] is analysed for different load levels, including the capacity limit load, where the cross-
section fully plastifies. The beam is modelled and analysed with different elements and modules.

= =, Myied

Figure 14.1: Problem Description

14.2 Reference Solution

The model follows an elastic-perfectly-plastic stress-strain behaviour as shown in Fig. 14.2. Under this
assumption, the beam remains elastic until the outermost fibers reach the yield stress. The correspond-
ing limit load can be calculated as:

Oyield bh?
Myield = Er— (14.1)

where Oyielq is the yield stress, b and h the dimensions of the beam. The cross-section fully plastifies
when the load reaches M = My = 1.5 x My ;e14, where all fibers of the beam are in condition of yielding

[6].

Oyield

—Oyield

Figure 14.2: Stress-Strain Curve
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14.3 Model and Results

The properties of the model are defined in Table 14.1. A standard steel material is used and modified
accordingly to account for the intended elastic-perfectly-plastic material behaviour.

Table 14.1: Model Properties

Material Properties Geometric Properties Loading
E=210000MPa L=1m Myielg =280 Nm
v=0.3 h=20mm

Oyield = 420 MPa b=10mm

The structure is modelled and analysed in various ways. For the first case the fiber beam is used
(TALPA), where the cross-section is discretised into single fibers and directly integrates the continuum
mechanical material reaction into beam theory, and physically nonlinear analysis is performed. For the
second case the standard beam elements are used and the model is analysed with STAR2 where a
nonlinear stress and strain evaluation determination is performed. For the third case, the quad elements
are used and a nonlinear analysis is done with ASE. The results are presented in Table 14.2 for the
three cases.

Table 14.2: Results

M/Myielq Fiber Beam  Standard Beam Quad Ref.
o [MPa] o [MPa] o Oeff

0.99 415.80 415.80 415.80 415.80 0<420.00

Fully Elastic

1.00 <420 <420 <420 <420 0<420.00

First Yield

<420 <420 <431.0 <420 0<420.00

148 Elastic-Plastic

Fully-Plastic Fully-Plastic Fully-Plastic 0=420.00

10 No Convergence No Convergence Fully-Plastic

151 Fully-Plastic Fully-Plastic Fully-Plastic Fully-Plastic

No Convergence No Convergence No Convergence No Convergence

This benchmark is designed to test elastic-plastic material behaviour under uniaxial loading conditions.
From the above results, it is evident that both beam element formulations adequately reproduce the
intended behaviour. Fig. 14.3 shows the distribution of stresses for the case of the fiber beam with
M/Myieig = 0.99, 1.0 and 1.5. For the quad element, the stress appears to exceed the limit value of
420 MPa. This is due to the fact that, as the plasticity involves at the cross-section, plastic strains also
appear in the lateral direction. This causes a biaxial stress state, which is not neglected by the quad
formulation, as shown in Fig. 14.4 for M/My;eiq = 1.0 and 1.48. A closer look at the list of results
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though, reveals that the effective stresses do not exceed the Oyieiq.

42(@ ‘

420

Figure 14.3: Fiber Beam Stress State

mazx. sigma: 420,00 MPa max, sigma: 430,97 MPa
max, steel stress: 0.00 MPa max, steel stress: 0.00 MPa
min, steel stress: 0,00 MPa min. steel stress: 0.00 MPa
min. sigma; -420.00 MPa min. sigma: -430.97 MPa

Figure 14.4: Quad Stress State

14.4 Conclusion

This example presents the pure bending of beams beyond their elastic limit for a non elastic material. It
has been shown that the behaviour of the beam is accurately captured for all three modelling options.

14.5 Literature

[6] S. Timoshenko. Strength of Materials, Part Il, Advanced Theory and Problems. 2nd. D. Van Nos-
trand Co., Inc., 1940.
[18] Verification Manual for the Mechanical APLD Application, Release 12.0. Ansys, Inc. 2009.
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15 BE12: Cantilever in Torsion

Overview

Element Type(s): B3D
Analysis Type(s): STAT, GNL
Procedure(s):
Topic(s):
Module(s): ASE
Input file(s): torsion.dat
15.1 Problem Description

The problem consists of a cantilever beam as shown in Fig. 15.1. The tip of the cantilever is offsetted in
y-direction by Ay, = /200 = 2.5 cm, creating a geometrical imperfection. The beam is loaded with a
transverse force P, and an axial force Px. The imperfection acts as a lever arm for the loading, causing
a torsional moment. The torsional moment at the support with respect to the local and global coordinate
system is determined.

X z

~-|P y

Ny ,"/ lz —
74 -7 -

Figure 15.1: Problem Description

15.2 Reference Solution

In order to account for the effect of the geometrical imperfection on the structure, second-order theory
should be used, where the equilibrium is established at the deformed system. According to the equilib-
rium of moments at the deformed system, with respect to the global x-axis, the torsional moment at the
support Mx g ,pq 1S:

Mxgiobat = Pz (uy +Ay)—Py uz, (15.1)
whereas by the local x-axis the torsional moment My, ,, is:
Ay
Mxiocat = Pz Uy + Px (T) uz, (15.2)

where (s the length of the beam, A, the initial geometrical imperfection and Py is negative for compres-
sion.
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15.3 Model and Results

The properties of the model [19] [20] are defined in Table 15.1. A standard steel material is used as well
as a standard hot formed hollow section with properties according to DIN 59410, DIN EN 10210-2. A
safety factor ym = 1.1 is used, which according to DIN 18800-2 it is applied both to the yield strength
and the stiffness. Furthermore, the self weight, the shear deformations and the warping modulus Cy
are neglected. At the support the warping is not constrained.

Table 15.1: Model Properties

Material Properties Geometric Properties Loading
5355 [=5m P,=10kN
ym=1.1 RRo/SH 200 x 100 x 10 [15] Px =100 kN
Cv=0 Ay =2.5cm

Table 15.2: Results

Uy Uz ng[obal MXlocal PbUCk

[ecm] [cm] [kNcm] [kNcm] [kN]

SOF. 3.209 10.204 57.08 26.98 163.7
Ref.[21] 3.0 10.2 57.0 269 164

The corresponding results are presented in Table 15.2. Figure 15.2 shows the deformed shape of the
structure and the nodal displacements for the z and y direction. From the presented results, we can
observe that the values of the moments are correctly computed. Here has to be noted that the reference
results are according to [19], where they are computed with another finite element software, and not with
respect to an analytical solution.

[uy]

[uz]

Figure 15.2: Deformations [mm]

70 VERIFICATION - Mechanical Benchmarks | SOFiSTiK 2022



29

<2 SOFISTIK

BE12: Cantilever in Torsion »

15.4 Conclusion

This example presents a case where torsion is induced to the system because of an initial geometrical
imperfection. It has been shown that the behaviour of the beam is captured accurately.

15.5 Literature

[15] K. Holschemacher. Entwurfs- und Berechnungstafeln fiir Bauingenieure. 3rd. Bauwerk, 2007.

[19] V. Gensichen and G. Lumpe. Zur Leistungsféhigkeit, korrekten Anwendung und Kontrolle
rdumlicher Stabwerksprogramme. Stahlbau Seminar 07.

[20] V. Gensichen. Zur Leistungsféhigkeit rdumlicher Stabwerksprogramme, Feldstudie in Zusamme-
narbeit mit ma3gebenden Programmbherstellern. Stahlbau Seminar 07/08.

[21] V. Gensichen and G. Lumpe. “Zur Leistungsfahigkeit, korrekten Anwendung und Kontrolle von
EDV-Programmen flr die Berechnung raumlicher Stabwerke im Stahlbau”. In: Stahlbau 77 (Teil 2)
(2008).
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Overview

Element Type(s): B3D

Analysis Type(s): STAT, GNL

Procedure(s): STAB

Topic(s):

Module(s): ASE

Input file(s): buckling_bar.dat
16.1 Problem Description

The problem consists of an axially loaded long slender bar of length [ with hinged ends, as shown in Fig.
16.1. Determine the critical buckling load. [18]

o

\

/2

o

(1S

'y

Figure 16.1: Problem Description
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16.2 Reference Solution

The problem of lateral buckling of bars is examined here. The case of a bar with hinged ends is very often
encountered in practical applications and is called the fundamental case of buckling of a prismatic
bar. For the case of an axially compressed bar there is a certain critical value of the compressive force
at which large lateral deflection may be produced by the slightest lateral load. For a prismatical bar with
hinged ends (Fig. 16.1) this critical compressive force is [6]:

m2El  m2EI

ZWZI_Z' (16.1)

Per

where [ is the full length of the bar, EI its flexural rigidity and B the effective length coefficient, whose
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value depends on the conditions of end support of the bar. For the fundamental case, B = 1. If the
load P is less than its critical value the bar remains straight and undergoes only axial compression.
This straight form of elastic equilibrium is stable, i.e., if a lateral force is applied and a small deflection
is produced this deflection disappears when the lateral load is removed and the bar becomes straight
again. By increasing P up to the critical load causes the column to be in a state of unstable equilibrium,
which means, that the introduction of the slightest lateral force will cause the column to undergo large
lateral deflection and eventually fail by buckling.

16.3 Model and Results

Only the upper half of the bar is modelled because of symmetry (Fig. 16.1). The boundary conditions
thus become free-fixed for the half symmetry model. A total of 20 elements are used to capture the
buckling mode. The properties of the model are defined in Table 16.1.

Table 16.1: Model Properties

Material Properties Geometric Properties Loading

E =300 MPa [=20m Py =1kN
h=0.5m Py << 1kN
A=0.25m?

I=5.20833x 103 m*

B = 2, free-fixed ends

fact
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Figure 16.2: Load-Deflection curve

A small horizontal load at the top is necessary in order to induce an initial horizontal displacement. It
should be sufficiently large to cause a nonlinear iteration, but it should not affect the result unintentionally.
A buckling eigenvalue determination is performed where the critical load factor is calculated. The results
are presented in Table 16.2. Moreover, an ultimate limit load iteration is done and the produced Load-
Deflection curve is shown in Fig. 16.2, as well as a part of the iteration summary.

74 VERIFICATION - Mechanical Benchmarks | SOFiSTiK 2022



"'

SOFiSTiK

)
5
X

=

BE13: Buckling of a Bar with Hinged Ends | »

Table 16.2: Results

SOF. Ref.
Pcr [kN] 38.553 38.553

16.4 Conclusion

This example presents the buckling of slender bars. It has been shown that the buckling properties of
the bar are accurately captured.

16.5 Literature

[6] S. Timoshenko. Strength of Materials, Part Il, Advanced Theory and Problems. 2nd. D. Van Nos-

trand Co., Inc., 1940.
[18] Verification Manual for the Mechanical APLD Application, Release 12.0. Ansys, Inc. 2009.
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Overview

Element Type(s): SH3D

Analysis Type(s): STAT, GNL

Procedure(s): STAB

Topic(s):

Module(s): ASE

Input file(s): buckling_bar_quad.dat
17.1 Problem Description

Benchmark Example 13 is tested here for QUAD plane elements. The problem consists of an axially
loaded long slender bar of length [ with hinged ends, as shown in Fig. 17.1. Determine the critical
buckling load [18].

o

P2 | |Pr2

4

¥
I

/2
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Figure 17.1: Problem Description
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17.2 Reference Solution

The problem of lateral buckling of bars is presented at Benchmark Example 13. For a prismatic bar, the
critical load is [6]:

m2El
Pcr= W. (171)

From the above equation it is evident, that the critical load does not depend upon the strength of the

material but only upon the dimensions of the structure and the modulus of elasticity of the material. Two
equal slender axially compressed bars, will buckle at the same compressive force, if they consist of the
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same flexural rigidity and material with the same Young’s modulus.

17.3 Model and Results

Only the upper half of the bar is modelled because of symmetry (Fig. 17.1). The boundary conditions
thus become free-fixed for the half symmetry model. A total of 20 elements are used to capture the
buckling mode. The properties of the model are defined in Table 17.1.

Table 17.1: Model Properties

Material Properties Geometric Properties Loading

E =300 MPa [=20m,h=0.5m P=1kN
A=0.25m? Px << 1kN
t=0.5m

I=5.20833x 10~3 m*

B = 2, free-fixed ends

A buckling eigenvalue determination is performed where the critical load factor is calculated. Result
of the eigenvalue calculation are presented in Table 17.2. The reference value of the critical load for
Benchmark Example 13 and 14 is calculated the same, since the properties of the two models are
equivalent, as explained in Section 17.2.

Table 17.2: Results

Solver Pcr [kN] Ref.  |er| [%]

BUCK - Simultaneous vector iteration 38.539 38.553 0.0379

17.4 Conclusion

This example presents the buckling of slender bars. It has been shown that the buckling properties of
the bar are accurately captured also with QUAD elements.

17.5 Literature

[6] S. Timoshenko. Strength of Materials, Part Il, Advanced Theory and Problems. 2nd. D. Van Nos-
trand Co., Inc., 1940.
[18] Verification Manual for the Mechanical APLD Application, Release 12.0. Ansys, Inc. 2009.
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18 BE15: Flexural and Torsional Buckling

Overview

Element Type(s): B3D

Analysis Type(s): STAT, GNL

Procedure(s): STAB

Topic(s):

Module(s): ASE

Input file(s): flex_tors_buckling.dat
18.1 Problem Description

The problem consists of a standard |-beam, subjected to a compressive load P and supported as shown
in Fig. 18.1. The flexural and torsional buckling load is determined.

: l@

a

Figure 18.1: Problem Description

18.2 Reference Solution

For the rolled steel profiles, such as IPE 300, the torsional buckling is generally only decisive, when the
buckling length for torsional buckling Sg is significantly larger than the one for the flexural buckling s, and
at the same time the slenderness ratio is low [19]. The analysed model fulfils the above prerequisites.
The flexural buckling load is:

n2 EL,

——, (18.1)
52 Tm

PbuckZ =

whereas the torsional buckling load is:
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1 2 ECpy
Pbucke = R GIr + 5 , (18.2)
£ Ym sg

where EI the flexural rigidity, Cy the warping modulus, Yy a safety factor, G the shear modulus, It the
torsional moment and iy is the polar radius of gyration calculated as following:

I, +1,
iy = . 18.3
M 2 (18.3)

18.3 Model and Results

The properties of the model [19] are defined in Table 18.1. A standard steel material is used, as well as
a standard rolled steel profile with properties according to DIN 1025-5. A safety factor ym = 1.1 is used,
which according to DIN 18800-2 it is applied both to the yield strength and the stiffness. Furthermore, the
self weight and the shear deformations are neglected. At all the supports the warping is not constrained.

Table 18.1: Model Properties

Material Properties Geometric Properties Loading
5355 Sse=50r6m P=600kN
ym=1.1 sz=2.50r3m
Cm =125900cm® IPE 300 [15]

I, =8360cm*

I,=604cm*

A=53.81cm?

The corresponding results are presented in Table 18.2. Figure 18.2 shows the deformed shape of the
structure for the first and second buckling eigenvalues. It is obvious that the first one corresponds to the
torsional buckling while the second one to the flexural.

Table 18.2: Results

Se=5.0[m]/s;=2.5[m] sg=6.0[m]/sz=3.0[m]
Pbuckz [kN] Pbucke [kN] Pbuckz [kN] Pbucke [kN]

SOF. 1820.92 1462.87  1264.53 1288.78
Exact 1820.89 1462.87  1264.51 1288.78
Ref. [21] 1818 1459 1264 1285
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Figure 18.2: Buckling Eigenvalues

18.4 Conclusion

This example presents the determination of torsional and flexural buckling loads. It has been shown that
the behaviour of the beam is captured accurately.

18.5 Literature

[15] K. Holschemacher. Entwurfs- und Berechnungstafeln fiir Bauingenieure. 3rd. Bauwerk, 2007.

[19] V. Gensichen and G. Lumpe. Zur Leistungsfédhigkeit, korrekten Anwendung und Kontrolle
rdumlicher Stabwerksprogramme. Stahlbau Seminar 07.

[21] V. Gensichen and G. Lumpe. “Zur Leistungsfahigkeit, korrekten Anwendung und Kontrolle von
EDV-Programmen fir die Berechnung rdumlicher Stabwerke im Stahlbau”. In: Stahlbau 77 (Teil 2)
(2008).
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19 BE16: Torsion due to Biaxial Bending

Overview

Element Type(s): B3D

Analysis Type(s): STAT, GNL

Procedure(s):

Topic(s):

Module(s): ASE

Input file(s): torsion_bending.dat
19.1 Problem Description

The problem consists of a beam subjected to transverse load P, and a lateral load Py, as shown in Fig.
19.1. The effect of torsion due to biaxial bending is examined.

Figure 19.1: Problem Description

19.2 Reference Solution

For an I-beam subjected to biaxial bending, without the action of a normal force, it follows directly from
the beam theory that a torsional moment will inevitably appear, even if the cross-section is double sym-
metric, the load is centrically applied, and the beam is statically determined. In order to account for this
effect, third order theory has to be utilised.

19.3 Model and Results

The properties of the model [19] are defined in Table 19.1. A standard steel material is used as well as
a cross-section with a standard rolled steel shape. A safety factor Yy = 1.1 is used, which according to
DIN 18800-2 it is applied both to the yield strength and the stiffness. Furthermore, the self weight and
the shear deformations are neglected. At the supports the warping is not constrained.
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Table 19.1: Model Properties

Material Properties Geometric Properties Loading
5355 [=5m P, =20kN
Ym=1.1 IPE 300 [17][22] P, =4kN

Cm =125900cm®

The results are presented in Table 19.2. It has to be noted that the reference results are according to
[19] and [21], where they are computed with another finite element software, and not with respect to an
analytical solution.

Table 19.2: Results

max | | Cm =125900 [cm®] Ref.[19] Cm=0 Ref.[19]
dx [rad] 0.0316 0.0315 0.0321 0.0321
My [kN m] 0.183 0.185 0.185 0.189
M, [kN m] 24.88 24.9  24.85 24.9
M, [kN m] 5.57 56  5.71 5.7

19.4 Conclusion

This example presents a case where torsion is induced to the system because of biaxial bending. It has
been shown that the behaviour of the beam is captured accurately.

19.5 Literature

[17] R. Kindmann, M. Kraus, and H. J. Niebuhr. Stahlbau Kompakt, Bemessungshilfen, Profiltabellen.
Verlag Stahleisen, 2006.

[19] V. Gensichen and G. Lumpe. Zur Leistungsféhigkeit, korrekten Anwendung und Kontrolle
rdumlicher Stabwerksprogramme. Stahlbau Seminar 07.

[21] V. Gensichen and G. Lumpe. “Zur Leistungsfahigkeit, korrekten Anwendung und Kontrolle von
EDV-Programmen fir die Berechnung raumlicher Stabwerke im Stahlbau”. In: Stahlbau 77 (Teil 2)
(2008).

[22] R. Kindmann. “Neue Berechnungsformel fur das IT von Walzprofilen und Berechnung der Schub-
spannungen”. In: Stahlbau 75 (2006).
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20 BE17: Lateral Torsional Buckling

Overview

Element Type(s): B3D

Analysis Type(s): STAT, GNL

Procedure(s):

Topic(s):

Module(s): ASE

Input file(s): lateral_torsional_buckling.dat
20.1 Problem Description

The problem consists of a single span beam with an initial geometrical imperfection at the middle, sub-
jected to a uniformly distributed load g, as shown in Fig. 20.1. The structure is examined for lateral
torsional buckling.

X X

* 3

-
z

| — t — |

Total System

~
! =t 1 A
K A %—(ﬂ By

Equivalent System

Model

Figure 20.1: Problem Description

20.2 Reference Solution

The I-beam of Fig. 20.1 has an initial geometrical imperfection in the y-direction Ay = /200 = 3.0 cm.
Using the symmetry of the equivalent system the model can be reduced to half as shown at Fig. 20.1.
Due to the bending moments, the load application on the upper flange of the beam (z,) and the imper-
fection, the beam is at risk for lateral torsional buckling. In order to account for this effect, third order
theory has to be utilised.

20.3 Model and Results

The properties of the model [19] are defined in Table 20.1. A standard steel material is used as well
as a standard rolled steel profile with properties according to DIN 1025-5. A safety factor yy = 1.1
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is used, which according to DIN 18800-2 it is applied both to the yield strength and the stiffness. The
loading is applied at the upper flange as shown in Fig. 20.1. Furthermore, the self weight and the shear
deformations are neglected. At the supports the warping is not constrained.

Table 20.1: Model Properties

Material Properties Geometric Properties Loading
5355,ym=1.1 [=6m,Ay=3cm qz=10kN/m
Cym = 490000 cm® IPE 400 [15] zp=—20cm

The results are presented in Table 20.2. It is observed that second-order theory (TH. Il) fails to capture
the moments with respect to the z-axis, therefore third-order theory (TH. Ill) has to be used. It has to
be noted that the reference results are according to [19], where they are computed with another finite
element software, and not with respect to an analytical solution.

Table 20.2: Results

Cm = 490000 [cm®] Ref. [19] Cv=0 Ref [19]
TH. Il TH. Il TH. Il TH. NI

uy [em] 0.094 0.082 0.089 0.184 0.158 0.172
uz [cm] 0.422 0.425 0.424 0.470 0.479 0.475
phix [rad] 0.0167  0.0166 0.0167 0.0367 0.0363 0.0365
My [kN m] 0.439 0.437 0.438 0.510 0.504 0.508
My, [kN m] 45.0 45.0 45.0 45.0 45.0 45.0
M [kN m] 0.001 0.747 0.752 0.001 1.627 1.641
M, [kN m] 0.606 0.604  0.607 0.0 0.0 0.0

20.4 Conclusion

This example examines the lateral torsional buckling of beams. It has been shown that the behaviour of
the beam is captured accurately.

20.5 Literature

[15] K. Holschemacher. Entwurfs- und Berechnungstafein flir Bauingenieure. 3rd. Bauwerk, 2007.
[19] V. Gensichen and G. Lumpe. Zur Leistungsféhigkeit, korrekten Anwendung und Kontrolle
rdumlicher Stabwerksprogramme. Stahlbau Seminar 07.
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21 BE18: Three-storey Column under Large Compres-
sive Force and Torsional Moment

Overview

Element Type(s): B3D

Analysis Type(s): STAT, GNL

Procedure(s):

Topic(s):

Module(s): ASE, DYNA

Input file(s): three_storey_column.dat
21.1 Problem Description

The problem consists of a three-storey column, subjected to a large compressive axial force N and a
torsional moment M; at the middle, as shown in Fig. 21.1. The rotation and twisting as well as the
torsional moments of the structure are determined.

N
=EIf]IT
l/2
4

/2

l

Figure 21.1: Problem Description

A

21.2 Reference Solution

A large axial compressive force is applied to the column of Fig. 21.1, in combination with a torsional
moment at the middle, which can cause warping and potentially buckling of the structure. In order to
account for this effect, second order theory has to be utilised. The total torsional moment Mt is given as
a sum of the different torsional parts, the primary, secondary and third respectively:

> My = My = Mr1 + M2 + Mr3, (21.1)
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where
Mri=GIr ¢, (21.2)
Mra=—ECm¢", (21.3)
M7s=N i; o, (21.4)
and the warping moment
My=—ECm9". (21.5)

where G is the shear modulus, It the torsional moment of inertia, ip the polar radius of gyration and
ECwm the warping torsion stiffness. Introducing the above into Eq. 21.1 we have:

(Grr + Nzg) ¢ — ECuo” = Mr = My (21.6)

21.3 Model and Results

The properties of the model [23] are defined in Table 21.1. A standard steel material is used and an
I-beam profile for the cross-section. A safety factor yy = 1.1 is used, which according to DIN 18800-2
it is applied both to the yield strength and the stiffness. At the supports the warping is not constrained.
The cross-sectional properties given in Table 21.1 are the values calculated by SOFiSTiK, matching the
analytical solution, except from the torsional moment I+ and the warping modulus Cy which are modified
to match the values of the reference example. This modification is done only for the sake of comparison
and it has to be noted that the reference results [23] are computed with another finite element software,
and not with respect to an analytical solution.

Table 21.1: Model Properties

Material Properties Geometric Properties Loading
ym=1.1 b=180mm N=1712 kN
l=6m h=400mm My =272kNcm
5355 tweb = 10mm

tflange = 14 mm
Cm =506884 cm®
I, =23071.6 cm?
I,=1363.9cm*

Ir =44.18 cm*

The results are presented in Table 21.2 and Fig 21.2. The value of M3 is not given in the Reference
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[23], but according to Eq. 21.4 is computed as —721 kNcm, which matches the calculated value by
SOFiSTIK. If we now sum the torsional moment parts, it is observed that Eq. 21.1 is satisfied and that
the total torsional moment at x = 0 is 136 kNcm.

Table 21.2: Results

SOF.  Ref.[23]

¢ [mrad] (x = /2) 294.4 294
¢ [mrad/cm] (x =0;x =) 1.5096 1.50965
M1 [kN cm] (x = 0) 491 491
Mt> [kN cm] (x = 0) 366 366
M3 [kN cm] (x = 0) —721 -
Mt [kNcm] (x =0) 136 136
M, [kN cm] 85583 85620

@—«,- -1.36 —#y
_3_57. -1.36
-3.34 -1.36
2.98 357 -1.36
250 —# _258@ 1.36 —#
-1.93 1.37
1.93 1.37 l1,36
1250 He2-98 H—136
2.98 3.57 136
3.34 4.30 136
3.57 476 1.36
By HBoo |
Mt [kN m] Mt1 [kKN m] Mt [kN m]

Figure 21.2: Results [kN m]

214 Conclusion

This example examines the torsional behaviour of the beam and the different parts involved in the cal-
culation of the total torsional moment. The results are reproduced accurately.

21.5 Literature

[23] V. Gensichen and G. Lumpe. Anmerkungen zur linearen und nichtlinearen Torsionstheorie im
Stahlbau. Stahlbau Seminar 2012.
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22 BE19: Two-span Beam with Warping Torsion and
Compressive Force

Element Type(s): B3D

Analysis Type(s): STAT, GNL

Procedure(s):

Topic(s):

Module(s): ASE, DYNA

Input file(s): two_span_beam.dat
22.1 Problem Description

The problem consists of a two-span beam, subjected to a large compressive axial force Ny at its right
end node, as well as a torsional moment Mt at the middle and an additional axial force N1 in the middle of
the right span, as shown in Fig. 22.1. The structure is examined for its torsional and warping behaviour.

1090 Mt N1 N>
A —w» _— Jt——
AN VAN ' /
 — vz &—— V4 —h—— 4 —

Figure 22.1: Problem Description

22.2 Reference Solution

While in first order theory, the axial force has no effect in the torsional deformations and moments, in
second order torsional theory, the influence of the axial force in the rotation and twisting is considered.
From the formulation of the equilibrium conditions at the twisted element, the torsional moment part
M3 results, which covers the contribution of the axial force in the total torsional moment. Therefore
second order theory is utilised here, in order to account for the torsional effect of the axial force, as
well as the warping torsion arising from the application of the torsional moment and the axial force at
the intermediary nodes of the beam. The total torsional moment Mt is given as a sum of the different
torsional parts, the primary, secondary and third respectively:

> My = My = Mr1 + Mz + Mr3, (22.1)

where
Mr1=GIr ¢, (22.2)
Mr,=—ECmo”, (22.3)
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M7s=N iIZJ o, (22.4)

and the warping moment

My=—ECm9¢". (22.5)

where G is the shear modulus, It the torsional moment of inertia, ip the polar radius of gyration and
ECwm the warping torsion stiffness. Introducing the above into Eq. 22.1 we have:

(Grr + Nzg) ¢ — ECu¢” = Mr = My (22.6)

22.3 Model and Results

The properties of the model [23] are defined in Table 22.1. A standard steel material is used and an
I-beam profile for the cross-section. A safety factor yy = 1.1 is used, which according to DIN 18800-2
it is applied both to the yield strength and the stiffness. At the supports the warping is not constrained.
The cross-sectional properties, given in Table 22.1, are the values calculated by SOFiSTiK, matching
the reference solution, except from the torsional moment I+ and the warping modulus Cy, which are
modified to match the values of the reference example. This modification is done only for the sake
of comparison and it has to be noted that the reference results [23] are computed with another finite
element software, and not with respect to an analytical solution. The results are presented in Table 22.2,
22.3 and Fig 22.2. The double result values given for some nodes, e.g. 309/308, indicate the value left
and right of the node respectively, and the exact result lies in between. When '— is used, it indicates a
change in the moment diagram.

Table 22.1: Model Properties

Material Properties Geometric Properties Loading
Ym=1.1 b=180mm ,h=400mm N1 =200kN
[=6m tweb = 10 mm , triange = 14 mm N> =1600 kN
5355 I,=23071.6cm*,I,=1363.9cm* M;=280kNcm

Cm = 506900 cm®
I =45.00 cm*

Table 22.2: Torsional Deformation Results

Node 1 Node 2
SOF. Ref[23] SOF. Ref.[23]

¢ [mrad] - - 294 294

¢’ [rad/cm] 1.525  1.52 ] ]
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Table 22.3: Torsional Moment Results

Node Mt [kNcm] Mty [kNcm] Mz [kNcm] Mg [kNecm] Mg, [kNm?]
] SOF. 121 505 382 —766 0
Ref. [23] 121 505 382 —766 0

1090 SOF. 121 363 309/308 —550/—550 5.35
Ref. [23] 121 363 308 —550 5.35

SOF. 121|—159 -9 118|—165 13/13 8.65

° Ref. [23] 121|—159 -9 117|—163 14 8.65
SOF. —159 —364 —345|—285 5511490 4.70

° Ref. [23] —159 —363 —346|—285 551|490 4.70
4 SOF. —159 —487 —328 656 0
Ref. [23] —159 —487 —328 656 0

| MT [kN m]

1] MTl [kN m]

— L MT2 [kN m]
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Figure 22.2: Results

In reference [23], except from the second order theory, the example is also analysed with respect to
geometrically nonlinear torsional theory which accounts additionally for the large torsional deformations.
This is done by introducing an additional torsional moment part, the helix torsional moment Mry. The
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results of both analysis are compared, leading to the conclusion that second order theory lies almost
always to the safe side.

22.4 Conclusion

This example examines the torsional behaviour of the beam and the different parts involved in the cal-
culation of the total torsional moment. The results are reproduced accurately.

22.5 Literature

[23] V. Gensichen and G. Lumpe. Anmerkungen zur linearen und nichtlinearen Torsionstheorie im
Stahlbau. Stahlbau Seminar 2012.
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Overview

Element Type(s): C2D

Analysis Type(s): STAT, MNL

Procedure(s): LSTP

Topic(s): SOIL

Module(s): TALPA

Input file(s): passive_earth_pressure.dat
23.1 Problem Description

The problem consists of a soil mass retained by a wall as shown in Fig. 23.1. The horizontal passive
earth pressure is determined and is compared to the value obtained for the case of the soil mass
externally forced to its limiting strength.

]

e B —

Figure 23.1: Problem Description

23.2 Reference Solution

When a retaining wall is forced against a soil mass, lateral passive earth pressure is exerted from the
soil to the wall. In order to describe the horizontal component of the pressure the soil will exert, an earth
pressure coefficient Kpp according to Coulomb theory is used:

2(¢—
Kph = cos’@-a , (23.1)

2
(1_\J sin(¢+6p) - sin(¢+p) ) cos2a

cos(a+6p) - cos(a+p)

where the parameters a, ¢, 6, and B are defined in Fig. 23.2. The wall friction angle is denoted by 6p
and the soil friction angle by ¢. The horizontal passive earth pressure resultant is [15]:

1
Eph =3 ¥ H? Kph. (23.2)

In order to account for the development of irreversible strains in the soil, under the action of the passive
load, a plasticity model has to be utilised. Whether plasticity occurs in a calculation, can be evaluated
with a yield function f, where the condition f = O stands for the plastic yielding. This condition can
be represented as a surface in principal stress space. In this Benchmark, the Mohr-Coulomb model is
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adopted, which represents an elastic perfectly-plastic behaviour. A perfectly-plastic model corresponds
to a fixed yield surface, i.e. a yield surface that is fully defined by model parameters and is not affected by
plastic straining. Moreover, for stress state within the yield surface, the behaviour is purely elastic and all
strains are reversible. Hence, the Mohr-Coulomb model requires the input of a total of five parameters,
the Young’s modulus E and Poisson’s ratio v for the definition of the elasticity, and three for the plasticity,
the friction angle ¢, the cohesion ¢ and the dilatancy angle ¢. The dilatancy angle is involved in the
plastic potential function and controls the evolution of plastic volumetric strain increments [24].

1—sing 2ccos¢

F=op— (23.3)

. 03— . ’
1+ sing 1+ sing

Figure 23.2: Passive Earth Pressure by Coulomb

The yield function for the Mohr-Coulomb model [24] is defined by Eq. 23.3, where 01 and 03 are the
principal stresses, and its yield surface is shown in Fig. 23.3.

—0?

Figure 23.3: Mohr-Coulomb Yield Surface in Principal Stress Space

23.3 Model and Results

The properties of the model are defined in Table 23.1. The Mohr-Coulomb plasticity model is used for
the modelling of the soil behaviour. The load is defined as a unit support displacement in the x-direction
and is increased gradually until a limit value. It is applied at node 405, which is kinematically coupled
with the wall nodes as shown in Fig. 23.4, and therefore corresponds to a uniformly applied load at the
wall nodes. Maximum displacement is recorded for each loading increment, and the curve of horizontal
passive earth pressure-displacement (Fig. 23.5) is plotted against the reference solution according to
Coulomb theory.
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Figure 23.4: Finite Element Model

Table 23.1: Model Properties

Material Properties Geometric Properties Loading
Wall Soil Wall Soil

E=30000MPa E=300MPa B=0.1m B=30m Wx=1mm
v=0.18 v=0.20 H=0.8m H=6m

Y =24 kN/m3 Y =19 kN/m3

¢ =1kN/m?

¢ =38°

Y =6°
Sp=0/3

2,500

2,000

1,500

Eph [kN/m]

1,000

500

—a— Numerical evolution
—— Theoretical value

| | | | | | | | |
0O 10 20 30 40 50 60 70 80 90 100

Wall displacement [mm)]

Figure 23.5: Horizontal Passive Earth Pressure-Displacement Curve
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23.4 Conclusion

This example examines the horizontal passive earth pressure determination for a soil mass retained by
a wall. The Mohr-Coulomb model for the definition of the soil material behaviour is adopted. It has been
shown that the behaviour of the soil is captured accurately.

23.5 Literature

[15] K. Holschemacher. Entwurfs- und Berechnungstafeln fiir Bauingenieure. 3rd. Bauwerk, 2007.
[24] AQUA Manual: Materials and Cross Sections. Version 18-0. SOFiSTiK AG. Oberschlei3heim, Ger-
many, 2017.
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Overview

Element Type(s): C2D

Analysis Type(s): STAT, MNL

Procedure(s): LSTP

Topic(s): SOIL

Module(s): TALPA

Input file(s): passive_earth_pressure_harden.dat
241 Problem Description

The model of Benchmark 20 is here extended for the case of a soil material described by the hardening
plasticity soil model. The problem consists of a soil mass retained by a wall as shown in Fig. 24.1. The
horizontal passive earth pressure is determined and is compared to the value obtained for the case of
the soil mass externally forced to its limiting strength.

AR

S B _—

Figure 24.1: Problem Description

24.2 Reference Solution

When a retaining wall is forced against a soil mass, lateral passive earth pressure is exerted from the
soil to the wall. In order to describe the horizontal component of the pressure the soil will exert, an earth
pressure coefficient Kpp according to Coulomb theory is used:

2 (6—
Kon = cos” (¢~ ) , (24.1)

2
(1_\J sin(¢+8p) - sin(¢+8) ) cos?q

cos(a+6p) - cos(a+p)

where the parameters a, ¢, 6p and B are defined in Fig. 24.2. The wall friction angle is denoted by 6p
and the soil friction angle by ¢. The horizontal passive earth pressure resultant is [15]:

1
Eph = 57 H? Kph. (24.2)

In order to account for the development of irreversible strains in the soil, under the action of the passive
load, a plasticity model has to be used. In this Benchmark the hardening plasticity soil model is adopted,
which is an extended elastoplastic material with an optimized hardening rule [24]. In contrast to the Mohr-
Coulomb model (Be. 20), which is an elastic-perfectly-plastic model, the yield surface of a hardening
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plasticity model is not fixed but it can expand due to plastic straining. Its hardening rule is based on a
hyperbolic stress-strain relationship, derived from triaxial testing. Hardening is limited by the material ’s
strength, represented by the classic Mohr-Coulomb failure criterion. Additionally, the model accounts for
the stress dependent stiffness, it captures the loading state and can therefore account for the different
stiffness in primary loading and un-/reloading paths. The important features of the model are [24]:

» the deviatoric hardening based on hyperbolic stress-strain relationship: input parameter Esg, ref,
Ry

+ the Mohr-Coulomb failure criterion: input parameter ¢, ¢, ¢
* the stress dependent stiffness: input parameter m, Pref

« the loading dependent stiffness: input parameter u, Eyr

« the optional limitation of tensile stress: input parameter f;

+ the modelling of the contractant behaviour and stiffness during primary compression (oedometric
testing): input parameter Es ref

« the preservation of a realistic stress ratio: input parameter ko

Figure 24.2: Passive Earth Pressure by Coulomb

The yield surface (Fig. 24.3) for the hardening plasticity model is bounded by the Mohr-Coulomb failure
criterion, while the oedometric properties create a cap yield surface, closing the elastic region in the
direction of the p-axis.

Mohr-Coulomb yield surface . %\%
/))6 01— 03

e

~—

e

Figure 24.3: Yield Surface Properties
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24.3 Model and Results

The properties of the model are defined in Table 24.1. The hardening plasticity model (GRAN) is used
for the modelling of the soil behaviour in order for a more realistic representation in comparison to the
elastic-perfectly-plastic Mohr-Coulomb model (Benchmark 20). The load is defined as a unit support
displacement in the x-direction and is increased gradually until a limit value. It is applied at node 405,
which is kinematically coupled with the wall nodes as shown in Fig. 24.4, and therefore corresponds
to a uniformly applied load at the wall nodes. Maximum displacement is recorded for each loading
increment, and the curve of horizontal passive earth pressure-displacement (Fig. 24.5) is plotted against
the reference solution according to Coulomb theory.

<l
<1
il
<l
o =
405 &7 ;lll
<
K
YA Y YA VAT e Yo VAV VAV VYAV AYAY VA VA VeYaVaVAVAVAVAVAYAVAYaVaVAVVAVAVAVAVAYAY.M
Figure 24.4: Finite Element Model
Table 24.1: Model Properties
Material Properties Geometric Properties Loading
Wall Soil Wall Soil
E=30000MPa E =300MPa B=0.1m B=30m Wx=1mm
v=0.18 u=0.20 H=0.8m H=6m

Y =24 kN/m?3 Y =19 kN/m3

c=1kN/m?
¢ =38°
Y=6°

Eslref =75 MPa

E50,ref = 75 MPG

m=0.55
Rf=0.9
Pref = 0.1 MPa

6p =@ /3, Ybuoyancy =9 kN/m?3

From the comparison of the curves with respect to the two different plasticity models and the refer-
ence solution, it can be observed that both approach the limit value accurately. Their basic difference
lies on the accounting of the hardening effect, a more realistic approach, which corresponds to higher
deformations for the limit value, as it can be observed by the hardening plasticity curve in Fig. 24.5.
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Figure 24.5: Horizontal Passive Earth Pressure-Displacement Curve
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Figure 24.6: Nodal Displacement for End Load in y-direction

244 Conclusion

This example examines the horizontal passive earth pressure determination for a soil mass retained by
a wall. The hardening plasticity model for the definition of the soil material behaviour is adopted and
compared to the Mohr-Coulomb model. It has been shown that the behaviour of the soil is captured
accurately.
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24.5 Literature

[15] K. Holschemacher. Entwurfs- und Berechnungstafeln fiir Bauingenieure. 3rd. Bauwerk, 2007.
[24] AQUA Manual: Materials and Cross Sections. Version 18-0. SOFiSTiK AG. Oberschlei3heim, Ger-
many, 2017.
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25 BE22: Tunneling - Ground Reaction Line

Element Type(s): C2D

Analysis Type(s): STAT, MNL

Procedure(s): LSTP

Topic(s): SOIL

Module(s): TALPA

Input file(s): groundline_hoek.dat
25.1 Problem Description

This problem consists of a cylindrical hole in an infinite medium, subjected to a hydrostatic in-situ state,
as shown in Fig. 25.1. The material is assumed to be linearly elastic-perfectly plastic with a failure
surface defined by the Mohr-Coulomb criterion and with zero volume change during plastic flow. The
calculation of the ground reaction line is performed and compared to the analytical solution according to
Hoek [25] [26].

Po
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©
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Figure 25.1: Problem Description

25.2 Reference Solution

The stability of deep underground excavations depends upon the strength of the rock mass surrounding
the excavations and upon the stresses induced in this rock. These induced stresses are a function of the
shape of the excavations and the in-situ stresses which existed before the creation of the excavations
[25]. When tunnelling in rock, it should be examined how the rock mass, surrounding the tunnel, deforms
and how the support system acts to control this deformation. In order to explore this effect, an analytical
solution for a circular tunnel will be utilised, which is based on the assumption of a hydrostatic in-situ
state. Furthermore, the surrounding rock mass is assumed to follow an elastic-perfectly-plastic material
behaviour with zero volume change during plastic flow. Therefore the Mohr-Coulomb failure criterion is
adopted, in order to model the progressive plastic failure of the rock mass surrounding the tunnel. The
onset of plastic failure, is thus expressed as:

01 =0cm + ko3, (25.1)
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where 07 is the axial stress where failure occurs, 03 the confining stress and o-m the uniaxial compres-
sive strength of the rock mass defined by:

2ccoso

m. (25.2)

Ocm =

The parameters ¢ and ¢ correspond to the cohesion and angle of friction of the rock mass, respectively.
The tunnel behaviour on the other hand, is evaluated in terms of the internal support pressure. A circular
tunnel of radius rp subjected to hydrostatic stresses po and a uniform internal support pressure p;, as
shown in Fig. 25.2, is assumed.

Po

}

i

Figure 25.2: Plastic zone surrounding a circular tunnel

As a measure of failure, the critical support pressure p¢r is defined:

2P0 — Ocm
=, 25.3
Pcr 1+ k ( )

where k is the coefficient of passive earth pressure defined by:

1+sing

=, (25.4)
1—-sing

If the internal support pressure p; is greater than pr, the behaviour of the surrounding rock mass

remains elastic and the inward elastic displacement of the tunnel wall is:

ro(1+v)

Uje = T (Po—pi), (25.5)

where E is the Young’s modulus and v the Poisson’s ratio. If p; is less than pc, failure occurs and the
total inward radial displacement of the walls of the tunnel becomes:

Ip
u[p= —

ro(1+v)
E

2
2(1+V)(po—pcr)( ) —(1—21/)(po—pf)], (25.6)

o

and the plastic zone around the tunnel forms with a radius rp defined by:
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1
ro = o|: 2(po(k—1)+ 0cm) :|U<— ) (25.7)

(1+Kk)((k=1)pi+0ocm)

25.3 Model and Results

The properties of the model are defined in Table 25.1. The Mohr-Coulomb plasticity model is used for
the modelling of the rock behaviour. The load is defined as a unit supporting pressure, uniform along the
whole line of the circular hole, following the real curved geometry. The ground reaction line is calculated,
which depicts the inward oriented deformation along the circumference of the opening that is to be
expected in dependence of the acting support pressure.

Figure 25.3: Finite Element Model

Table 25.1: Model Properties

Material Properties Geometric Properties Pressure Properties

E =5000000 kN/m? ro=3.3m Po =29700 kN/m?
v=0.2 Pi... = 7000 kN/m?

Y =27 kN/m3 Pc.r = 8133.744 kN/m?

Ybuoyancy = 17 kN/m?3
¢=39°, =0°

¢ =3700 kN/m?

k =4.395

The uniaxial compressive stress of the rock mass ocm is calculated at 15514.423 kN/m? and the
critical pressure pc, is 8133.744 kN/mZ2. The ground reaction line is presented in Fig. 25.4, as the
curve of the inward radial displacement over the acting support pressure. It can be observed that the
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calculated values are in agreement with the analytical solution according to Hoek.
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Figure 25.4: Ground Reaction Line

25.4 Conclusion

This example examines the tunnel deformation behaviour with respect to the acting support pressure. It
has been shown that the behaviour of the tunnel in rock is captured accurately.

25.5 Literature

[25] E. Hoek. Practical Rock Engineering. 2006.
[26] E. Hoek, PK. Kaiser, and W.F. Bawden. Support of Underground Excavations in Hard Rock. 1993.
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26 BE23: Undamped Free Vibration of a SDOF System

Overview

Element Type(s): SPRI

Analysis Type(s): DYN

Procedure(s): TSTP

Topic(s):

Module(s): DYNA

Input file(s): undamped_sdof.dat
26.1 Problem Description

This problem consists of an undamped linearly elastic SDOF system undergoing free vibrations, as
shown in Fig. 26.1. The response of the system is determined and compared to the exact reference
solution.

Figure 26.1: Problem Description

26.2 Reference Solution

The essential physical properties of a linearly elastic structural system subjected to an external excitation
or dynamic loading are its mass, stiffness and damping. In the simplest model of a SDOF system, as
shown in Fig. 26.2 in its idealized form, these properties are concentrated in a single physical element.
For this system the elastic resistance to displacement is provided by the spring of stiffness k, while the
energy-loss mechanism by the damper ¢. The mass m is included in the rigid body, which is is able to
move only in simple translation, and thus the single displacement coordinate u(t) completely describes
its position [27].

Figure 26.2: Problem Description
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The motion of a linear SDOF system, subjected to an external force p(t) is governed by [27] [28]:

mu+ cu+ ku=p(t) (26.1)

Setting p(t) = 0, gives the differential equation governing the free vibration of the system

mi+cu+ku=0 (26.2)

For a system without damping (¢ =0), Eq. 26.2 specialises to

mi+ku=0 (26.3)

Free vibration is initiated by disturbing the system from its static equilibrium position by imparting the
mass some displacement u(0) and/or velocity u(0) at time zero. Subjected to these initial conditions,
the solution to the homogeneous differential equation of motion is:

u(o0)
u(t)=u(0)cos(wnt) +

sin(wnt) (26.4)

n

k
wn =1\ — (26.5)
m

represents the natural circular frequency of vibration and f the natural cyclic frequency of vibration

where

Wn
21

fn (26.6)

The period T represents the time required for the undamped system to complete one cycle of free
vibration and is given by

2n 1
Th=—=— (26.7)
wn fn

26.3 Model and Results

The properties of the model are defined in Table 26.1. The system is initially disturbed from its static
equilibrium position by a displacement of 20 mm and is then let to vibrate freely. Eq. 26.4 is plotted
in Fig. 26.4, presenting that the system undergoes vibration motion about its undeformed (u = 0)
position, and that this motion repeats itself every 2m/w, seconds. The exact solution is compared to the
calculated time history of the displacement of the SDOF system for different time integration methods.
The time step is taken equal to 0.02 sec corresponding to a dt/T ratio of 1/50.
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Figure 26.3: Finite Element Model

Table 26.1: Model Properties

Model Properties Excitation Properties
m=1t u(0)=20mm
k = 4n2 kN/m u(0) =0
T=1sec
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Figure 26.4: Undamped Free Vibration Response

From the results presented in Table 26.2, we observe that the response computed by the examined
integration schemes is in a good agreement with the exact solution.

Table 26.2: Results

Integration method Newmark  Wilson Hughes Alpha Ref.

Umax [mMm] 19.949 19.963 19.956 20.000
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26.4 Conclusion

This example examines the response of a linear elastic undamped SDOF system undergoing free vibra-
tion. It has been shown that the behaviour of the system is captured adequately.

26.5 Literature

[27] R.W. Clough and J. Penzien. Dynamics of Structures. 3rd. Computers & Structures, Inc., 2003.
[28] A. K. Chopra. Dynamics of Structures: Theory and Applications to Earthquake Engineering. Pren-
tice Hall, 1995.
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27 BE24: Free Vibration of a Under-critically Damped
SDOF System

Element Type(s): SPRI, DAMP

Analysis Type(s): DYN

Procedure(s): TSTP

Topic(s):

Module(s): DYNA

Input file(s): damped_sdof.dat
271 Problem Description

This problem consists of an under-critically damped linearly elastic SDOF system undergoing free vi-
brations, as shown in Fig. 27.1. The response of the system is determined and compared to the exact
reference solution.

Figure 27.1: Problem Description

27.2 Reference Solution

The differential equation governing the free vibration of a linear elastic damped SDOF system, as shown
in Fig. 27.1 is given by [27] [28]:

mi+cu+ku=0 (27.1)

where ¢ is the linear viscous damping, k the linear spring stiffness and m the mass of the system.
Dividing Eq. 27.1 by m gives

+2Ewpi+w?u=0 (27.2)
where wp = v k/m as defined in Benchmark 23 and & represents the damping ratio

c c
E= = (27.3)
2mwp  Cer
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The parameter ¢ is called the critical damping coefficient (Eq. 27.4), because it is the smallest value
of ¢ that inhibits oscillation completely. If ¢ j cc- or & | 1 the system is said to be under-critically damped
and thus oscillates about its equilibrium position with a progressively decreasing amplitude [28].

Cer=2mwp=2vkm

(27.4)

Free vibration is initiated by disturbing the system from its static equilibrium position by imparting the
mass some displacement u(0) and/or velocity u(0) at time 0. Subjected to these initial conditions, the
solution to the homogeneous differential equation of motion is:

a(0) + & wn u(0)

wp

u(t)=e5wnt [u (0)cos(wp t) + ( )sin (wp t)} (27.5)

where wp represents the natural frequency of damped vibration and Tp the natural period of damped
vibration given by

Wn=wny1—&2 (27.6)

Tg=— = —— (27.7)

Undamped system

15 A

10 1 Damped system

-15 4

Figure 27.2: Effects of Damping on Free Vibration

The damped system oscillates with a displacement amplitude decaying exponentially with every cycle
of vibration, as shown in Fig. 27.2. The envelope curves £pe~&%“nt touch the displacement curve at
points slightly to the right of its peak values, where
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- 2
o= \l u(0)? + (u(o) + Sl u(o)) (27.8)

wp

27.3 Model and Results

The properties of the model are defined in Table 27.1. The system is initially disturbed from its static
equilibrium position by a displacement of 20 mm and is then let to vibrate freely. Eq. 27.5 is plotted
in Fig. 27.3 and is compared to the calculated time history of the displacement of the SDOF system
for different time integration methods. The time step is taken equal to 0.02 sec corresponding to a
dt/T ratio of 1/50. From the curves, it is obvious that the examined integration schemes are in a good
agreement with the exact solution. The damping of the SDOF system is represented in two ways, either
by the spring element with a damping value in axial direction or with the damping element. The results
obtained are exactly the same for both case. This can be visualised in the result files for the case of the
Newmark integration scheme.

Table 27.1: Model Properties

Model Properties Excitation Properties
m=1t u(0)=20mm
k = 4n? kN/m u®=o0
T=1sec
E =5%
20
15| A
10 A
g
£ 5| i
x
3
g Of |
S
[0
5,
5 O )
A7)
a
—10} |
—— Exact
Newmark
=15 Wilson |
= Hughes Alpha
_2% | | | | | | |
.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time [sec]

Figure 27.3: Damped Free Vibration Response
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27.4 Conclusion

This example examines the response of a linear elastic under-critically damped SDOF system undergo-
ing free vibration. It has been shown that the behaviour of the system is captured adequately.

27.5 Literature

[27] R.W. Clough and J. Penzien. Dynamics of Structures. 3rd. Computers & Structures, Inc., 2003.
[28] A. K. Chopra. Dynamics of Structures: Theory and Applications to Earthquake Engineering. Pren-
tice Hall, 1995.
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28 BE25: Eigenvalue Analysis of a Beam Under Various
End Constraints

Element Type(s): B3D

Analysis Type(s): DYN

Procedure(s): EIGE

Topic(s):

Module(s): DYNA

Input file(s): eigenvalue_analysis.dat
28.1 Problem Description

This problem consists of a beam with various end constraints, as shown in Fig. 28.1. The eigenfrequen-
cies of the the system are determined and compared to the exact reference solution for each case.

s

= JAN
& AN
JaRss T

Figure 28.1: Problem Description

28.2 Reference Solution

The general formula to determine the eigenfrequency of a standard Bernoulli beam for a linear elastic
material is given by [15] [29]

A2 | EI

I=5u\ i

(28.1)

where EI the flexural rigidity of the beam, [ the length, u = v * A/g the mass allocation and A a factor
depending on the end constraints. The values of A for various cases are given in Table 28.1. In this
example, we analyse four different cases of a beam structure:

1. simple cantilever
2. cantilever with simply supported end
3. simply supported

4. both ends fixed
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Table 28.1: Constraints Factor

End Constraints A

3 A=1.875
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28.3 Model and Results

The properties of the model are defined in Table 28.2 and the resulted eigenfrequencies are given in
Table 28.3. For the eigenvalue analysis a consistent mass matrix formulation is used as well as a
Bernoulli beam. The finite element model for all examined cases consists of ten beam elements.

Table 28.2: Model Properties

Material Properties Geometric Properties
E=200MPa h=1lcm,b=1cm,l=1m
Y =25kN/m3 A=1cm?,I1=0.1cm* u=0.025t/m

Table 28.3: Results

Eigenfrequency SOF.[Hz] Ref. [HZ]

simple cantilever 0.457 0.457
cantilever with simply supported end 2.004 2.003
simply supported 1.283 1.283
both ends fixed 2.907 2.907

28.4 Conclusion

The purpose of this example is to test the eigenvalue capability of the program w.r.t. different options. It
has been shown that the eigenfrequencies for all beam systems are calculated accurately.

28.5 Literature

[15] K. Holschemacher. Entwurfs- und Berechnungstafeln fir Bauingenieure. 3rd. Bauwerk, 2007.
[29] S. Timoshenko. Vibration Problems in Engineering. 2nd. D. Van Nostrand Co., Inc., 1937.
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29 BE26: Response of a SDOF System to Harmonic Ex-
citation

Element Type(s): SPRI, DAMP

Analysis Type(s): DYN

Procedure(s): TSTP

Topic(s):

Module(s): DYNA

Input file(s): harmonic_damped.dat, harmonic_undamped.dat
29.1 Problem Description

This problem consists of an elastic SDOF system undergoing forced vibration, as shown in Fig. 29.1.
The response of an undamped and damped system is determined and compared to the reference solu-
tion.

Figure 29.1: Problem Description

29.2 Reference Solution

A harmonic force is p(t) = po Sin wpt, where p, is the amplitude value of the force and its frequency
wp is called the exciting frequency. The differential equation governing the forced harmonic vibration of
a damped system is given by [27] [28]:

mi+cu+ku=posinwpt (29.1)

mu+ ku=posinwpt (29.2)

For undamped systems it simplifies to Eq. 29.2. Subjected also to initial conditions, u(0) and u(0), the
total solution to Eqg. 29.2 is:

u(o Wp/ W 1
( )—& P ]sin wnt+ &—sin wpt  (29.3)
Wn k 1_(0)p/wn)2 k 1_(wp/wn)2

transient steadystate

u(t)=u(0)coswnt+ [
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Eq. 29.3 shows, that u(t) contains two distinct vibration components, first the term sin wpt gives a
vibration at the exciting frequency and second the terms sin wnpt and cos wnt give a vibration at the
natural frequency of the system. The first term is the steady state vibration, corresponding to the applied
force and the latter is the transient vibration, depending on the initial conditions. It exists even if the initial
conditions vanish, in which case it becomes

Wp
u(t —— | sinwpt— —sinwnt 29.4
(t) = kl—(wp/wn)z[ pt= o ] (29.4)
For the case of a damped SDOF system, the total solution is given by
u(t) = e 59t [Acoswpt+ B sin wpt] + Csin wpt + D cos wpt (29.5)

transient steadystate

The coefficients C and D are determined from the particular solution of the differential equation of motion
(Eg. 29.1), whereas A and B are determined in terms of the initial conditions. For the special case of
zero initial conditions, the coefficients are given by

_ 2
_Pe 1~ (@p/en) (29.6)
k [1—(wp/wn)?]% +[28 (wp/wn)]?
_Po 25 (Wp/tn) (29.7)
k [1-— (Ot)p/ét)n)z]2 +[2§ (Ot)p/ét)n)]2
A=-D (29.8)
AE—C n
_ A&~ Cwp/wn) (29.9)

e

For the special case where the exciting frequency equals the natural frequency of the SDOF system, we
observe the resonant response. For the undamped system, the steady state response amplitude tends
towards infinity as we approach unity and the peak values build up linearly, as shown in Fig. 29.2. For
the damped case though, they build up in accordance to (ust/2E)e~5¥nt and towards a steady state
level, as shown in Fig. 29.2. The static deformation ust = po/k, corresponds to the displacement which
would be produced by the load p,, if applied statically, and serves as a measure of amplitude.

,WnmwwwMuu
W

Undamped system Damped system

~
L

Figure 29.2: Response to Resonant Loading for at-rest initial conditions
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29.3 Model and Results

The properties of the model are defined in Table 29.1. The system is excited by a harmonic sinusoidal
force and undergoes a forced vibration with zero initial conditions. The cases of the elastic damped
and undamped SDOF system with a frequency ratio wp/wn = 2 are examined and their responses are
compared to the exact solutions presented in Section 29.2. The resonance response is also examined
for both systems, as shown in Fig. 29.4.

Table 29.1: Model Properties

Model Properties Excitation Properties
m=1t u(0)=0

k = 4m? kN/m u®=0
T=1sec po =10kN
E=2% Wp =2 wn

Displacement Ux [mm]
—Exact

+-- Newmark

150
100 h
I

|

50

i
2

-100

i | “'J‘ TR R R EE R LR R
T D -

-150 -

-200 -

= (a) Damped system

Displacement Ux [mm] —Exact

~~~~~ Newmark
200 +
150 4

100 4

50 A

Time [sec]

-50 4

-100 A

-150 4

=200 1

-250 -

(b) Undamped system

Figure 29.3: Response to Harmonic Loading for at-rest initial conditions and ratio wp/wn = 2: (a)
E=2%,(b) E=0
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Displacement Ux [mm] Envelope curves
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(b) Undamped system

Figure 29.4: Response to Resonant Loading (wp/wp = 1) for at-rest initial conditions: (a)
§=2%,(b) §=0

294 Conclusion

The purpose of this example is to test the calculation of the response of a dynamic system in terms of a
harmonic loading function. It has been shown that the behaviour of the system is captured adequately.

29.5 Literature

[27] R. W. Clough and J. Penzien. Dynamics of Structures. 3rd. Computers & Structures, Inc., 2003.
[28] A. K. Chopra. Dynamics of Structures: Theory and Applications to Earthquake Engineering. Pren-
tice Hall, 1995.
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30 BE27: Response of a SDOF System to Impulsive
Loading

Element Type(s): SPRI

Analysis Type(s): DYN

Procedure(s): TSTP

Topic(s):

Module(s): DYNA

Input file(s): impulse_sine_wave.dat, impulse_rectangular.dat
30.1 Problem Description

This problem consists of an elastic undamped SDOF system undergoing forced vibration (Fig. 30.1) due
to an impulsive loading as the one shown in Fig. 30.2. The response of the system is determined and
compared to the exact reference solution.

Figure 30.1: Problem Description

1 p(t)

Figure 30.2: Arbitrary Impulsive Loading

30.2 Reference Solution

Another special case of dynamic loading of the SDOF system is the impulsive load. Such a load consists
of a single principal impulse of arbitrary form, as illustrated in Fig. 30.2, and generally is of relatively
short duration. Damping has much less importance in controlling the maximum response of a structure
to impulsive loads than for periodic or harmonic loads because the maximum response to a particular
impulsive load will be reached in a very short time, before the damping forces can absorb much energy
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from the structure [27]. Therefore the undamped response to impulsive loads will be considered in this
Benchmark.

 p(t)  p(t)
Po Po
| _
) m— t1 — Y tp —
(a) Half sine wave (b) Rectangular

Figure 30.3: Examined Impulse Loading

The response to an impulse loading is always divided into two phases, the first corresponds to the
forced vibration phase in the interval during which the load acts and the second corresponds to the free
vibration phase which follows. Let us consider the case, where the structure is subjected to a single half
sine wave loading as shown in Fig. 30.3(a). Assuming that the system starts from rest, the undamped
response ratio time history R(t) = u(t)/(po/k), is given by the simple harmonic load expression

1 , ,
R(t) = 1——,82[5“7 wWpt— B sin wnt] (30.1)

where B =wp/Wn, Po is the amplitude value of the force and wp its frequency. Introducing the non
dimensional time parameter a = t/t1 so that wpt = mar and wpt = ma/B, we can rewrite the equation
accordingly

R (o) — 1
(or)—1

no
5 [sin na — B sin ?} 0<a<l1 (30.2)

where t; the duration of the impulse and 8 = T/2t1. This equation is valid only for phase I correspond-
ingto 0 < a < 1. While it is very important to understand the complete time history behaviour as shown
in Fig. 30.4, the engineer is usually only interested in the maximum value of response as represented
by Points a, b, ¢, d, and e. If a maximum value occurs in Phase I, the value of a at which it occurs can
be determined by differentiating Eq. 30.2 with respect to a and equating to zero

dR (o)
= (30.3)
da
solving for a yields the a values for the maxima
2Bn
a= n=0,12,... 0<a<l1 (30.4)
B+1

For phase II where t > t;1 and the free vibration occurs, the value of a is not necessary and the
maximum response is given by
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-2 [
Rmax = [—} cos — a=>1 (30.5)
1— 2 2B

Accordingly for the case of a rectangular impulse loading Fig. 30.3(b), the general response ratio solution
for at rest initial conditions and for phase I is given by

t
R(a)=1—c052n?a 0<ax<l1 (30.6)

The maximum response ratio Rmqgx IS given again in terms of a and can be determined in the same
manner by differentiating Eq. 30.6 with respect to a and equating to zero, yielding

a=pn n=0,1,2,... 0<a<l1 (30.7)
For phase II, the maximum response of the free vibrating system is given by

t
Rmax = 2 Sin ?1 ax1 (30.8)

Special attention has to be given in the case of 8 = 1 where the expression of the response ratio becomes
indeterminate and the L’ Hospital’s rule has to be utilised.

AR

Figure 30.4: Response Ratios due to Half Sine Pulse

30.3 Model and Results

In the expressions derived before, the maximum response produced in an undamped SDOF structure by
each type of impulsive loading depends only on the ratio of the impulse duration to the natural period of
the structure t1/T. Thus, it is useful to plot the maximum value of response ratio Rmax as a function of
t1/T for various forms of impulsive loading. Such plots are commonly known as displacement-response
spectra and are derived here, for two forms of loading, a rectangular and a half sine wave impulse.
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Generally plots like these can be used to predict with adequate accuracy the maximum effect to be
expected from a given type of impulsive loading acting on a simple structure. The properties of the
model are defined in Table 30.1. The resulting figures are presented in Fig. 30.5.

Table 30.1: Model Properties

Model Properties Excitation Properties
m=1t u(0)=0
k = 4m?2 kN/m u(0)=0
T=1sec po =10kN
2 P
//
x
=]
o
o 151
©
[0
(2]
C
2
) 1t
o
£
2 /
£ /
é //
s 05 ¢ —— Exact -
Half-sine-wave impulse
—— Exact
Rectangular impulse

¥ | | | | | | |
%.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Ratio t1/T = Impulse duration/Period

Figure 30.5: Displacement - Response Spectra for Two Types of Impulse

30.4 Conclusion

The purpose of this example is to test the calculation of the response of a dynamic system in terms of
an impulsive loading. It has been shown that the behaviour of the system is captured adequately.

30.5 Literature

[27] R.W. Clough and J. Penzien. Dynamics of Structures. 3rd. Computers & Structures, Inc., 2003.
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31 BE28: Cylindrical Hole in an Infinite Elastic Medium

Element Type(s): C2D

Analysis Type(s): STAT

Procedure(s):

Topic(s): SOIL

Module(s): TALPA

Input file(s): hole_elastic.dat
31.1 Problem Description

This problem consists of a cylindrical hole in an infinite elastic medium subjected to a constant in-situ
state, as shown in Fig. 31.1. The material is assumed to be isotropic and elastic. The stresses and the
displacements are verified.

Po
AERERREERE

ie)
o

RARRARARER
bradtddodd

breddtdend

Figure 31.1: Problem Description

31.2 Reference Solution

The problem of calculating the displacements and stresses outside a circular hole in an infinite elastic
medium, with a uniform stress state far from the hole, was first solved by the German engineer Kirsch
in 1898. It is a rather important topic due to the fact that most of the holes drilled through rock are of
circular section.

The classical Kirsch solution can be used to find the radial and tangential displacement fields and stress
distributions, for a cylindrical hole in an infinite isotropic elastic medium under plane strain conditions.
The stresses 0 and 0y for a point at polar coordinates (r, 8) outside the cylindrical opening of radius a
are given by [30]:

p1+ P2 a’) p1—p2 402 3ot
or= 1—— |+ 1-— + cos 26 31.1
r 2 ( rz) 2 [ r2 r4 ( )
+ a? — 3a%
go= 1P TN PR, PN ) hs20 (31.2)
2 r2 2 r4

The radial outward displacement u,, assuming conditions of plane strain, is given by:
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u =P PP, 0y~ E cos2e (31.3)
4G r 4G r r2

where G is the shear modulus, v the Poisson ratio and p1, p2, 6, r are defined in Fig. 31.2

ur
= Ug
= W o
« Ur
p1 = g MO
[—=
[=—=g
[=—=3
—
[y
—

boedotbtatt e

Figure 31.2: Cyllindrical Hole in an Infinite Elastic Medium

31.3

Model and Results

The properties of the model are defined in Table 31.1. The radius of the hole is 1 m and is assumed to
be small compared to the length of the cylinder, therefore 2D plane strain conditions are in effect. A fixed
external boundary is located 29.7 m from the hole center. The model is presented in Fig. 31.3. The
stresses and displacements are calculated and verified with respect to the formulas provided in Section

31.2.
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Figure 31.3: Finite Element Model

Table 31.1: Model Properties

Material Properties

Geometric Properties

Pressure Properties

E=6777.9 MPa
v=0.21

a=1m

I'boundary = 29.7m

Po =30 MPa
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Figure 31.4: Radial and Tangential Stresses for Cylindrical Hole in Infinite Elastic Medium
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Figure 31.5: Radial Displacement for Cylindrical Hole in Infinite Elastic Medium
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Figure 31.6: Total Displacement Distribution

Figures 31.4 and 31.5 show the radial and tangential stress and the radial displacement respectively,
along a line, lying on the X-axis. This line (cut) can be visualised in Fig. 31.6, where the radial displace-
ment distribution is illustrated. The results are in very good agreement with the reference solution.

314 Conclusion

This example verifies the deformation and stresses behaviour of a cylindrical hole in an infinite elastic
medium. It has been shown that the behaviour of the model is captured accurately.

31.5 Literature

[30] J. C. Jaeger, N. G. W. Cook, and R. W. Zimmerman. Fundamentals of Rock Mechanics. 4th.
Blackwell Publishing, 2007.
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32 BE29: Cylindrical Hole in an Infinite Mohr-Coulomb
Medium

Element Type(s): C2D

Analysis Type(s): STAT, MNL

Procedure(s): LSTP

Topic(s): SOIL

Module(s): TALPA

Input file(s): hole_mohr.dat
32.1 Problem Description

This problem verifies stresses for the case of a cylindrical hole in an infinite elastic-plastic medium
subjected to a constant in-situ state, as shown in Fig. 32.1. The material is assumed to be linearly
elastic and perfectly plastic with a failure surface defined by the Mohr-Coulomb criterion. The stresses
and the displacements are verified.

Po

AR RRREAR

SARARARERR
SRR NN RN

SRR N RN R R

Figure 32.1: Problem Description

32.2 Reference Solution

Consider a hollow cylinder with inner radius a and outer radius r, under plane strain conditions, with a
uniform pressure applied to its outer surface. If this pressure is slowly increased from 0 to some value
Po, at first the cylinder will everywhere be in the elastic zone. As Po increases further, the yielding will
start, the yielded zone will grow radially outward, and the cylinder will consist of an inner annular region
that has yielded and an outer annulus that is still in its elastic state [30]. A specialised problem is now
the calculation of the stresses outside a cylindrical hole in an infinite elastic-perfectly-plastic medium,
here with a failure surface defined by the Mohr-Coulomb criterion. Assume that the rock mass is initially
under hydrostatic stress P, and then a circular hole of radius a is drilled into the rock, so that the stress
at r = a is reduced to some value P;. The yield zone radius R, is given analytically by the theoretical
model based on the solution of Salencon [31]
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2 P, + % P
Ro=a (32.1)

@+1m+ﬁ%

where o is the radius of the hole, P, the initial in-situ stress, P; the internal pressure and Kp, q are given
by

K = 1+sing -
P l1—sing (322)
g=2ctan(45+ ¢/2) (32.3)

The parameters ¢ and ¢ correspond to the cohesion and angle of friction of the medium respectively.
For sufficiently small values of P,, where P, j P; holds, the medium will be in its elastic state, and the
stresses will be given by [30] [32]

Ro\?2

0r=Po—(PO—0re)(T) (324)
Ro\?

0g = Po + (Po— Ore) (7) (32.5)

where r is the distance from the field point to the center of the hole and ore is the radial stress at the
elastic-plastic interface

Ore =

Kot 1 (2Po—q) (32.6)

For P, > P; , the rock will fail within some annular region surrounding the borehole. The stresses in the
yielded zone will be given by

r\Ke—1
or=——2 +(P,-+ 9 )(—) 32.7)
Kp—1 Ko—1)\a
r Kp—1
o =9 +/<p(p[+ 9 )(—) (32.8)

32.3 Model and Results

The properties of the model are defined in Table 32.1. The radius of the hole is 1 m and is assumed
to be small compared to the length of the cylinder, therefore 2D plane strain conditions are in effect. A
fixed external boundary is located 29.7 m from the hole center. The model is presented in Fig. 32.2.
The stresses are calculated and verified with respect to the formulas provided in Section 32.2.
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Table 32.1: Model Properties

Material Properties

Geometric Properties

Pressure Properties

E=6777.9 MPa a=1m Po =30 MPa
v=0.21 I'boundary = 29.7m Pi=0or1MPa
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Figure 32.2: Finite Element Model
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Figure 32.3: Radial and Tangential Stresses for Cylindrical Hole in Infinite Mohr-Coulomb Medium

Figure 32.3 show the radial and tangential stress, along a line, lying on the X-axis. Results are presented
for two cases, first with no internal pressure and second with P; = 1 MPa. The results in both cases are
in very good agreement with the reference solution.
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324 Conclusion

This example verifies the stresses of a cylindrical hole in an infinite elastic-perfectly-plastic medium. It
has been shown that the behaviour of the model is captured accurately.

32.5 Literature

[30] J. C. Jaeger, N. G. W. Cook, and R. W. Zimmerman. Fundamentals of Rock Mechanics. 4th.
Blackwell Publishing, 2007.

[81] J. Salencon. “Contraction Quasi-Statique D’ une Cavite a Symetrie Spherique Ou Cylindrique
Dans Un Milieu Elasto-Plastique”. In: Annales Des Ports Et Chaussees 4 (1969).

[32] Phase 2 Stress Analysis Verification Manual Part I. Rocscience Inc. 2009.
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33 BE30: Strip Loading on an Elastic Semi-Infinite Mass

Overview

Element Type(s): C2D
Analysis Type(s): STAT
Procedure(s):
Topic(s): SOIL
Module(s): TALPA
Input file(s): strip_load.dat
33.1 Problem Description

This problem concerns the analysis of a strip loading on an elastic semi-infinite mass, as shown in Fig.
33.1. The material is assumed to be isotropic and elastic. The stresses are verified.

Figure 33.1: Problem Description

33.2 Reference Solution

The problem focuses on the calculation of the stresses due to a strip loading on an semi-infinite mass.
The stresses under the surface are given by [33]:

oy=%[a+sinorcos (a+26)] (33.1)
p .
Ox = —[a—sinacos (a+ 26)] (33.2)
T
and the principal stresses are
P .
o1 = = [a+ sina] (33.3)
p .
o3 = = [d—sina] (33.4)

where p, a, § are described in Fig. 33.2
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Figure 33.2: Vertical Strip Loading on a Semi-Infinite Mass

33.3 Model and Results

The properties of the model are defined in Table 33.1. The strip footing has a width of 2 m. The material
is considered to be isotropic and elastic and plane strain conditions are in effect. For the analysis,
boundary conditions are applied as shown in Fig. 33.3. The model is analysed with various dimensions
in order to record the influence of the boundary in the results. The stresses are calculated and verified
with respect to the formulas provided in Section 33.2. The results are printed for the case of a vertical
line (cut) for x = 0 where the stresses in x and y coincide with the principal stresses.

AT A A A AP PP P AP A AT A A AR AT A AP AT I AP AP AR AP AAIAAA PP AP AP A A T AP AP AT AP AAIAAS
POATAY oY Vi i

Figure 33.3: Finite Element Model

Table 33.1: Model Properties

Material Properties Geometric Properties Pressure Properties
E =20000MPa H=25,50,100m P=1MPa/area
v=0.2 B=2H
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Figure 33.4: Comparison of Horizontal and Vertical Stresses Under the Strip Loading
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Figure 33.5: Vertical Stress Distribution for a Strip Loading on a Semi-Infinite Mass

Fig. 33.4 shows the horizontal and vertical stress along the cutting line, for the analysed models with
various dimensions. This line (cut) can be visualised in Fig. 33.5, where the contours of the vertical
stress for the case of H = 50 m are illustrated. From the results of the stresses, it is evident that the
vertical stresses are not influenced significantly from the dimensions of the model. On the contrary, for
the horizontal stresses it is obvious, that as the boundary moves further away, its influence vanishes and
the results are in very good agreement with the reference solution.

SOFiSTiK 2022 | VERIFICATION - Mechanical Benchmarks 137



2> SOFiSTiK

BE30: Strip Loading on an Elastic Semi-Infinite Mass

33.4 Conclusion

This example verifies the distribution of stresses of a semi-infinite mass under strip loading. It has been
shown that the behaviour of the model is captured accurately.

33.5 Literature

[33] H.G. Poulos and E.H. Davis. Elastic Solutions for Soil and Rock Mechanics. Centre for Geotech-
nical Research, University of Sydney, 1991.
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34 BE31: Snap-Through Behaviour of a Truss

Element Type(s): TRUS

Analysis Type(s): STAT, GNL

Procedure(s): LSTP

Topic(s):

Module(s): ASE

Input file(s): snap_through.dat
34.1 Problem Description

This problem is concerned with one of the fundamental geometric non-linearity (GNL) tests. A simple
two-node truss, as shown in Fig. 34.1, is examined in terms of the limit load and snap-through behaviour.

Figure 34.1: Problem Description

34.2 Reference Solution

In this problem a truss is pin-jointed to a rigid surface at one end and subjected to a transverse vertical
point force at the other end as shown in Fig. 34.1. The loaded end is restrained to move only vertically
and the truss in inclined with respect to the horizontal. This problem is effectively a symmetrical half
of a two-bar structure and is utilised here in order to demonstrate the snap-through behaviour and limit
points. The analytical solution assuming a shallow strut is given by [34] [14]

YE v + 7 + 7] (34.1)

EAH3 (2u 3u? U3 )
P= -

where the parameters H and L are shown in Fig. 34.1. The reference solution is plotted in Fig. 34.2.The
load-displacement curve rises until it reaches a limit point A. If we continue further, the next point will be
B, where the bar is horizontal and the vertical load reduces to zero. Further increments cause the bar to
deflect below the horizontal axis until the second limit point is reached at point C. Note that after point
B, the load reverses its sign and acts upwards. After point C, the bar continues its motion downwards
until it reaches point D, where the vertical load is zero.

Note that under load-control approach, snap-through behaviour occurs after the first limit point A, where
the bar suddenly jumps from point A to point E without any increase in the load. By switching from load-
control to displacement-control, i.e. the displacement rather than the load is applied in small increments,
the solution is able to progress beyond the limit point A, where further displacements cause the load to
reduce as the bar reaches a horizontal position at B.
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Figure 34.2: Analytical Load-Displacement Curve

34.3 Model and Results

The properties of the model are defined in Table 34.1. In the load-control approach, the load is applied
in significantly small increments in order to be able to capture point A. In the displacement-control, the
displacement increments are of 1 mm. The load-displacement curve for both approaches is presented
in Fig. 34.3 and compared to the analytical solution. If we solve Eq. 34.1 with respect to the limit points,
we observe that at point A the displacement is 10.57 mm and the corresponding critical loading is Pcr
=9.6225 N.

Table 34.1: Model Properties

Material Properties Geometric Properties Loading

E=500x 103 N/mm? H=25mm P=10N

v=0.4999 0.5 L=2500mm Au=1mm
A =100 mm?

Fig. 34.3 shows that the load-control approach reaches the first limit point and suddenly snaps to the
new equilibrium state, corresponding to point E in Fig. 34.2. The value of the load obtained before the
snap-through occurs, corresponding to point A, is P = 9.62 N, with a displacement of 10.415 mm,
which is in very good agreement with the theoretical critical value Pr. Furthermore, we can observe that
the more suitable solution strategy, for such a simple system, for obtaining the load-deflection response
is to adopt the displacement control approach, which clearly as shown in Fig. 34.3, has no difficulty with
the local limit point at A and traces the complete equilibrium path.
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Figure 34.3: Calculated Load-Displacement Curve

34.4 Conclusion

This example verifies the determination of the limit load and snap-through behaviour of a simple truss.
It has been shown that the geometric non-linear behaviour of the model is captured accurately.

34.5 Literature

[14] A. A. Becker. Background to Finite Element Analysis of Geometric Non-linearity Benchmarks.
Tech. rep. NAFEMS, 1998.

[34] M. A. Crisfield. Non-linear Finite Element Analysis of Solids and Structures - Volume 1. John Wiley,
1991.
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35 BE32: Thermal Extension of Structural Steel in case
of Fire

Element Type(s): BF2D, SH3D

Analysis Type(s): STAT, MNL

Procedure(s): LSTP

Topic(s): FIRE

Module(s): TALPA, ASE

Input file(s): thermal_extension, quad_32.dat
35.1 Problem Description

This benchmark is concerned with the validation of the structural analysis in case of fire with respect to
the general calculation method according to DIN EN 1992-1-2. Therefore test case 4 is employed as
presented in Annex CC of the standard DIN EN 1992-1-2/NA:2010-03 [35]. In this example the validation
of the extension of structural steel, for the model of Fig. 35.1, at different constant temperature exposures
is examined.

Figure 35.1: Problem Description

35.2 Reference Solution

The physical, mechanical and mathematical basics of engineering-based fire design programs, should
be validated in terms of thermal, cross-sectional and system analysis. The aim of Annex CC [35] is,
through a collection of test cases, to check their applicability for fire proof evaluation on real structures.
For every example a parameter-dependent test matrix, for the relevant assessment criteria, is provided,
where the computational accuracy of the program is examined. Results of existing analytical solutions
or of approved programs are also provided, as well as the acceptable specified tolerances.

35.3 Model and Results

The properties of the model are defined in Table 35.1. A fictional beam, as depicted in Fig. 35.1, with
cross-sectional dimensions b / h = 100/100 mm and the length of 100 mm is examined. Different
temperatures are assigned to the material S 355 of the cross-section. The analysis is performed with
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TALPA, where the FIBER beam element is utilised, as well as with ASE, where the QUAD element is
tested. The computed and the reference results are presented in Table 35.2, Fig. 35.2 and Table 35.3
for the FIBER beam and QUAD element, respectively.

Table 35.1: Model Properties

Material Properties Geometric Properties Test Properties

S 355 [=100mm Initial Conditions:

fykzoccy =355 N/mm?  h=100mm 0 =20°C

Stress-strain curve b=100mm Homogeneous temperature component:

according to DIN EN
1993-1-2

© =100, 300, 500, 600, 700, 900°C

Table 35.2: Results for Thermal Elongation of Steel - FIBER

o[ C] Ref. [35] SOF. ler| [%] Tol.
Alfmm] Al'[mm]  ore[mm]

100 0.09984 0.09984 0.000mm for®@ <300°C

300 0.37184 0.37184 0.000 mm + 0.05 mm

500 0.67584 0.67584 0.000 %

600 0.83984 0.83984 0.000% for®>300°C

700 1.01184 1.01184 0.000 % +1%

900 1.18000 1.18000 0.000 %

Table 35.3: Results for Thermal Elongation of Steel - QUAD

o[ C] Ref. [35] SOF. ler| [%] Tol.
Alfmm] Al [mm]  ore[mm]

100 0.09984 0.09984 0.000mm for®<300°C

300 0.37184 0.37184 0.000 mm + 0.05 mm

500 0.67584 0.67584 0.000 %

600 0.83984 0.83984 0.000% for®>300°C

700 1.01184 1.01184 0.000 % +1%

900 1.18000 1.18000 0.000 %
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Figure 35.2: Temperature Strains

35.4 Conclusion

This example verifies the extension of structural steel at different constant temperature exposures. It
has been shown that the calculation results are in excellent agreement with the reference results.

35.5 Literature

[35] DIN EN 1991-1-2/NA: Eurocode 1: Actions on structures, Part 1-2/NA: Actions on structures ex-
posed to fire. CEN. 2010.
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36 BE33: Work Laws in case of Fire for Concrete and
Structural Steel

Element Type(s): BF2D, SH3D

Analysis Type(s): STAT, MNL

Procedure(s): LSTP

Topic(s): FIRE

Module(s): TALPA, ASE

Input file(s): temperature_compression.dat, quad_33.dat
36.1 Problem Description

This benchmark is concerned with the validation of the structural analysis in case of fire with respect to
the general calculation method according to DIN EN 1992-1-2. Therefore test case 5 is employed as
presented in Annex CC of the standard DIN EN 1992-1-2/NA:2010-03 [35]. In this example the validation
of the change in length of structural steel and concrete in compression, for the model of Fig. 36.1, at
varying temperature and load capacity levels, is investigated.

Figure 36.1: Problem Description

36.2 Reference Solution

The aim of Annex CC [35] is to check the applicability of the programs for engineering-based fire de-
sign on real structures. In this case the influence of the combination of increasing temperature and
compressive loading with respect to the loading capacity of the structure is examined.

36.3 Model and Results

The properties of the model are defined in Table 36.1. A fictional beam as depicted in Fig. 36.1 is
examined here, for the case of structural steel S 355 and of concrete C 20/25, with cross-sectional
dimensions b/h=10/10mm, (=100 mmandb/h=31.6/31.6 mm, [ =100 mm, respectively.
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Different temperatures and load levels are investigated. The boundary conditions are set such that
stability failure is ruled out. The analysis is performed with TALPA, where the FIBER beam element
is utilised. The computed and the reference results are presented in Table 36.2 for structural steel
and in Table 36.3 for concrete. Fig. 36.2 presents stress-strain curves for structural steel for different

temperature levels.

Table 36.1: Model Properties

Material Properties

Geometric Properties

Test Properties

Steel Concrete Steel Concrete

S 355 C 20/25 [=100mm [=100mm Initial Conditions:
fyk =355MPa  fcx =20MPa h=100mm h=31.6 mm © =20°C
Stress-strain: Stress-strain: b=10mm b=31.6mm Homog. temp.:

DIN EN 1993-1-2

DIN EN 1992-1-2

20,200, 400,
600, 800°C
Loading:

0s(0) / fyk(o)
or

0c(0) / fek(@) =

0.2,0.6,0.9
Table 36.2: Results for Structural Steel - FIBER
o[ C Ref. [35] SOF. er [%] Tol.
Oso) ! fykey Al[mm] Al [mm] [%0]
20 0.2 0.034 0.034  0.560
0.6 0.101 0.101 —-0.424
0.9 0.152 0.152 —-0.094
200 0.2 —-0.194 —-0.194 -0.141
0.6 —0.119 -0.119 -0.119
0.9 0.159 0.156 1.794
400 0.2 —0.472 —-0.472 0.097
0.6 —0.293 —-0.294 —-0.305 £3%
0.9 0.451 0.449 0.525
600 0.2 —-0.789 —0.789 0.053
0.6 —0.581 —-0.581 -0.054
0.9 0.162 0.160 1.245
800 0.2 —-1.059 -—1.059 0.030
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Table 36.2: (continued)

O C] Ref. [35] SOF. e, [%] Tol.
Os) / fyke) Al[mm] Al [mm] [%]
0.6 —-0.914 -0.914 -0.028
0.9 -0.170 -0.172 -1.164
Table 36.3: Results for Concrete - FIBER

0[°C Ref. [35] SOF. er [%] Tolerance
Os@) ! fyk@) Al[mm] Al [mm] [%]

20 0.2 0.0334 0.0334 0.074

0.6 0.104 0.1036 0.428

0.9 0.176 0.1763 —-0.173

200 0.2 -0.107 -0.1070 0.024

0.6 0.0474 0.0474 —-0.035

0.9 0.2075 0.2075 0.014

400 0.2 —-0.356 —0.3557 0.085
0.6 —0.075 —0.0750 0.016 +3%

0.9 0.216 0.2160 —0.009

600 0.2 -0.685 -—-0.6850 -—0.007

0.6 0.0167 0.0167 —-0.182

0.9 0.744 0.7442 —-0.033

800 0.2 —-1.066 -—1.0662 —0.023

0.6 —0.365 —0.3645 0.145

0.9 0.363 0.363 -—-0.010

Next step is the analysis of the same example with ASE where the QUAD element is now tested. The

results are presented in Table 36.4 for structural steel and in Table 36.5 for concrete.

Table 36.4: Results for Structural Steel - QUAD

0 C Ref. [35] SOF. er [%] Tolerance
0s) / fyke)y Al[mm] Al [mm] [%]
20 0.2 0.034 0.034 0.560
0.6 0.101 0.101 —0.424
0.9 0.152 0.152 —0.094
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Table 36.4: (continued)

O[° (] Ref. [35] SOF. er [%] Tolerance
0s0) / fyk@) Al[mm] Al [mm] [%]
200 0.2 —-0.194 -0.194 —0.208

0.6 —0.119 -0.120 —0.448
0.9 0.159 0.151 5.341
400 0.2 —-0.472 -—0.472 0.010
0.6 —0.293 —-0.297 —1.447 3%
0.9 0.451 0.422 6.396
600 0.2 -0.789 -0.790 -—-0.103
0.6 -—0.581 -0.589 —1.302
0.9 0.162 0.130 19.626
800 0.2 -1.059 -1.060 —0.093
0.6 —-0.914 -0.920 —0.657
0.9 -0.170 -—0.202 -—18.540

Table 36.5: Results for Concrete - QUAD

o[ C] Ref. [35] SOF. er[%] Tolerance
Os(0) ! fyk(o) Allmm] Al [mm] [%]
20 0.2 0.0334 0.0334 0.081

0.6 0.1040 0.1036 0.429
0.9 0.1760 0.1763 —0.173
200 0.2 -0.1070 -0.1070 0.019
0.6 0.0474 0.0474 —-0.037
0.9 0.2075 0.2075 0.015
400 0.2 —-0.3560 -—0.3557 0.082
0.6 —0.0750 -—0.0750 0.014 £3%
0.9 0.2160 0.2160 —0.008
600 0.2 -0.6850 -—0.6851 -—0.010
0.6 0.0167 0.0167 —0.207
0.9 0.7440 0.7442 —0.033
800 0.2 —-1.0660 -—1.0663 —0.025
0.6 —0.3650 -—0.3645 0.147
0.9 0.3631 0.3630 -—0.014
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Figure 36.2: Steel Loading Strains

36.4 Conclusion

This example verifies the change in length of structural steel and concrete at different temperature and
load levels. It has been shown that the calculation results with TALPA and the FIBER beam element are
in very good agreement with the reference results. For the case of the QUAD layer element the results
present some deviation only for the structural steel and specifically for the case of a high stress level,
reaching the 90% of the steel strength.

36.5 Literature

[35] DIN EN 1991-1-2/NA: Eurocode 1: Actions on structures, Part 1-2/NA: Actions on structures ex-
posed to fire. CEN. 2010.
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37 BE34: Ultimate Bearing Capacity of Concrete and
Steel under Fire

Element Type(s): BF2D, SH3D

Analysis Type(s): STAT, MNL

Procedure(s): LSTP

Topic(s): FIRE

Module(s): TALPA, ASE

Input file(s): capacity.dat, quad_34.dat
371 Problem Description

This benchmark is concerned with the validation of the structural analysis in case of fire with respect to
the general calculation method according to DIN EN 1992-1-2. Therefore test case 6 is employed as
presented in Annex CC of the standard DIN EN 1992-1-2/NA:2010-03 [35]. In this example the ultimate
bearing capacity of structural steel and concrete in compression, for the model of Fig. 37.1, at varying
temperature levels, is investigated.

Figure 37.1: Problem Description

37.2 Reference Solution

The aim of Annex CC [35] is to check the applicability of the programs for engineering-based fire design
on real structures. In this case the influence of the combination of temperature and compressive loading,
on the ultimate bearing capacity is examined.

37.3 Model and Results

The properties of the model are defined in Table 37.1. A fictional beam as depicted in Fig. 37.1 is
examined here, for the case of structural steel S 355 and of concrete C 20/25, with cross-sectional
dimensions b/ h=10/10 mm, =100 mmand b/ h=31.6/31.6 mm, =100 mm, respec-
tively. The boundary conditions are set such that stability failure is ruled out. The analysis is performed
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with TALPA, where the FIBER beam element is utilised. The computed and the reference results are
presented in Table 37.2 for structural steel and in Table 37.3 for concrete.

Table 37.1: Model Properties

Material Properties Geometric Properties Test Properties

Steel Concrete Steel Concrete

S 355 C 20/25 [=100mm [=100mm Initial Conditions:

fyk =355MPa  fck =20MPa h=100mm h=31.6 mm @ =20°C

Stress-strain: Stress-strain: b=10mm b=31.6 mm Homog. temp.:

DIN EN 1993-1-2  DIN EN 1992-1-2 20,200,400,
600, 800°C

Table 37.2: Results for Structural Steel - FIBER beam

O C] Ref. [35] SOF  el[kN] e [%] Tol.
NRr ik [KN]  Nggik' [kN]

20 —35.5 —35.5 0.000 0.000
200 —35.5 —35.5 0.000 0.000 +3%
400 —35.5 —35.5 0.000 0.000 and
600 —16.7 —16.7 -—0.015 0.090 =+ 0.5[kN]
800 —-3.9 —-3.9 0.005 -0.128

Table 37.3: Results for Concrete - FIBER beam

o[ C] Ref. [35] SOF  e[kN] er[%] Tol.
NRfik [KN]  Ngfik' [KN]

20 —20.0 —20.0 —0.029 0.144
200 ~19.0 —~19.0 —0.027 0.144 +3%
400 ~15.0 —~15.0 —0.022 0.144 and
600 —9.0 —9.0 —0.013 0.144 = 0.5 [kN]
800 ~3.0 —3.0 —0.004 0.144

Next step is the analysis of the same example with ASE where the QUAD element is now tested. The
results are presented in Table 4 for structural steel and in Table 5 for concrete.
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Table 37.4: Results for Structural Steel - QUAD

o C] Ref. [35] SOF  e[kN] e [%] Tol.
NRrfik [KN]  Nggik’ [kN]

20 —35.5 —35.5 0.000 0.000
200 —35.5 —35.5 0.000 0.000 +3%
400 —35.5 —35.5 0.000 0.000 and
600 —16.7 —16.7 -—0.015 0.090 =+ 0.5[kN]
800 —-3.9 —-3.9 0.005 -0.128

Table 37.5: Results for Concrete - QUAD

o[ C Ref. [35] SOF.  e[kN] er[%] Tol.
NRfik [KN]  Ngfik' [KN]

20 —20.0 —20.0 —0.029 0.144
200 ~19.0 —~19.0 —0.037 0.193 +3%
400 ~15.0 —~15.0 —0.023 0.156 and
600 —9.0 —9.0 —0.013 0.150 = 0.5 [kN]
800 ~3.0 —3.0 —0.015 0.489

37.4 Conclusion

This example verifies the influence of compressive loading on the ultimate bearing capacity under differ-
ent temperature levels. It has been shown that the calculation results are in very good agreement with
the reference results for both the QUAD layer element and the FIBER beam element.

37.5 Literature

[35] DIN EN 1991-1-2/NA: Eurocode 1: Actions on structures, Part 1-2/NA: Actions on structures ex-
posed to fire. CEN. 2010.
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38 BE35: Calculation of Restraining Forces in Steel
Members in case of Fire

Element Type(s): BF2D, SH3D

Analysis Type(s): STAT, MNL

Procedure(s): LSTP

Topic(s): FIRE

Module(s): TALPA, ASE

Input file(s): restraining_forces.dat, quad_35.dat
38.1 Problem Description

This benchmark is concerned with the validation of the structural analysis in case of fire with respect to
the general calculation method according to DIN EN 1992-1-2. Therefore test case 7 is employed as
presented in Annex CC of the standard DIN EN 1992-1-2/NA:2010-03 [35]. In this example the restrain-
ing forces developed in an immovable steel member due to temperature exposure are investigated for
the model of Fig. 38.1.

1 —

Oo

hl =W

Ou

Figure 38.1: Problem Description

38.2 Reference Solution

The aim of Annex CC [35] is to check the applicability of the programs for engineering-based fire design
on real structures. In this case the influence of temperature exposure on the development of restraining
forces in steel is investigated. To illustrate the development of the restraining forces, consider a steel
bar fixed at both ends and exposed to fire. As the bar is heated it tries to expand. However, the fixture
prevents expansion in the longitudinal direction. Thus, the fixture exerts restraining forces on the bar.
Since the bar is prevented from longitudinal expansion, it is possible to expand in the other directions.

38.3 Model and Results

The properties of the model are defined in Table 38.1. A beam with cross-sectional dimensions b/h =
100/100 mm, [ = 1000 mm and fixed at both ends, as depicted in Fig. 38.1, is examined here. The
material of the cross-section is structural steel with a fictive yield strength of fyk20°c) = 650 N/mm?
and thermo-mechanical properties according to EN 1993-1-2. The model is exposed to different tem-
peratures. In the first case the same temperature is assigned across the cross-section height, whereas
in the second case, the temperature difference of the upper and lower fiber is 200°C. The analysis is
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performed with TALPA, where the FIBER beam element is utilised. The computed and the reference
results are presented in Table 38.2.

Table 38.1: Model Properties

Material Properties Geometric Properties Test Properties
fyk2o°c) = 650 N/mm? [=1000mm Case 1
Eazocc) = 210000 N/mm? ~ h=100mm O, = 120°,C O, = 120°C

Stress-strain curve

according to DIN EN 1993-1-2

b=100mm

Case 2
O, =20° C0O,=220°C

Table 38.2: Results for Structural Steel - FIBER beam

Temperature Load Ref. [35] SOF.  |er|[%] Tol.
01[°C] X X’ (%]
Nzw [KN] —2585.0 —2584.8 0.006 =*1

120/120 Mzyw [kNm] 0.0 0.0 0.000 =<1
Ozw [N/mm?] —258.5 —258.5 0.006 %5

Nzw [kN] —2511.0 —2503.9 0.282 1

20/220 Mz [kNm] —40.3 —40.2 0.249 +£1

Ozw [N/mm?]

—479.0 —479.0 0.000 5

Next step is the analysis of the same example with ASE where the QUAD element is now tested. The
results are presented in Table 38.3 for both temperature loads.

158

Table 38.3: Results for Structural Steel - QUAD

Temperature Load Ref. [35] SOF. |er|[%] Tol.
O[°C X X [%]
Nzw [kN] —2585.0 —2595.7 0.414 <1

120/120 Mzyw [KNm] 0.0 0.0 0.000 <1
ozw [N/mm?] —258.5 —-258.98 0.186 %5

Nzw [kN] —2511.0 —2539.7 1.14 =+1

20/220 Mzw [KNm] —40.3 —41.23 231 1

Ozw [N/mm?]

—479.0 —484.65 1.180 <5
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For the quad element, the results appear to deviate from the reference solution. This is due to the fact
that, as the plasticity involves at the cross-section, plastic strains appear also in the lateral direction’.
This causes a biaxial stress state (gx # 0), which is not neglected by the quad formulation, as shown in
Fig. 38.2, and has an effect on both the stresses and moments in the y direction.

é

Figure 38.2: Nonlinear Stresses for Temperature 220 °C at Bottom Quad Layer

38.4 Conclusion

This example verifies the development of restraining forces in steel due to temperature exposure. It has
been shown that the calculation results are in very good agreement with the reference results for both
the QUAD layer element and the FIBER beam element.

38.5 Literature

[35] DIN EN 1991-1-2/NA: Eurocode 1: Actions on structures, Part 1-2/NA: Actions on structures ex-
posed to fire. CEN. 2010.

'In the case of quad elements,  is set to O for the better representation of the boundary conditions and the results.
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39 BE36: Pushover Analysis: Performance Point Calcu-
lation by ATC-40 Procedure

Element Type(s):

Analysis Type(s):

Procedure(s):

Topic(s): EQKE

Module(s): SOFILOAD

Input file(s): pushover-pp-atc.dat
39.1 Problem Description

The following example is intended to verify the ATC-40 procedure for the calculation of the performance
point (illustrated schematically in Fig. 39.1), as implemented in SOFiSTiK. The elastic demand and
capacity diagrams are assumed to be know.

Sa
A EI. Demand Diagram

Performance Point

apacity Diagram

emand Diagram

N
7

Sdp Sd

Figure 39.1: Determination of the performance point PP (Sdp, Sap)

39.2 Reference Solution

The reference solution is provided in [36], 8.3.3.3 "Performance Point Calculation by Capacity Spectrum
Method - Procedure A”.

Assuming that the elastic demand diagram (5% elastic response spectrum in ADRS format' ) and the
capacity diagram are known, it is possible to determine the performance point PP (Sqp, Sap) (Fig. 39.1).
The procedure comprises of a series of trial calculations (trial performance points PPt (Sdp,t, Sap,t))s
in which the equivalent inelastic single degree of freedom system (SDOF), represented by the capacity
diagram, is transformed to an equivalent elastic SDOF system whose response in form of the perfor-
mance point PP is then calculated from the reduced elastic response spectrum (demand diagram). The
computation stops when the performance point PP is within a tolerance of a trial performance point PP;.
The ATC-40 Procedure A is a semi-analytical procedure since it involves graphical bilinear idealization
of the capacity diagram. Detailed description of this step-by-step procedure can be found in [36].

TADRS = Spectral Acceleration S, - Spectral Displacement Sy format
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39.3 Model and Results

In order to verify the analysis procedure for the determination of the performance point, a test case has
been set up in such a way that it comprises of a SDOF with a unit mass and a non-linear spring element.
It is obvious that for such an element the quantities governing the transformation from the original system
to the equivalent inelastic SDOF system must be equal to one, i.e.

bcnod=1 ; I'=1 ; m=1, (39.1)

where ¢cnog is the eigenvector value at control node, I' is the modal participation factor and m is the
generalized modal mass. Writing now the equations which govern the conversion of the pushover curve
to capacity diagram, we obtain [37]

Ucnod
S4g=——"—=Ucnod » (39.2a)
¢cnod - cne
Vb
Sq= 2. m =Vp, (39.2b)

where Vp, is the base shear and ucnog is the control node displacement.

Since the original system is a SDOF system, Vp and Ucnoqg are nothing else but the force in spring P
and the displacement of the unit mass u, respectively. It follows further that the force-displacement work
law assigned to the spring element corresponds to the capacity diagram in ADRS format, with the force
P and displacement u equal to S4 and Sq, respectively.

The capacity diagram used in the reference example is defined by four points, whose coordinates are
listed in the Table 39.1. According to the analysis above, these points can be used to define the force-
displacement work law P — u of the non-linear spring element (Fig.39.2).

Table 39.1: Model Properties [36]

Capacity Diagram Elastic Demand

Point (Sd[mm], Sa[m/sz]) UBC 5% Elastic Response Spectrum.
A (48.77, 2.49) Seismic Zone 4, ZEN = 0.40.

B (71.37, 3.03) No near-fault effects.

C (96.01, 3.39) Soil Profile:

D (199.14, 3.73) -Type Sg: Ca=0.40,Cy =0.40

-Type Sp: Ca=0.44,Cy=0.64

162 VERIFICATION - Mechanical Benchmarks | SOFiSTiK 2022



BE36: Pushover Analysis: Performance Point Calculation by ATC-40 Procedure .®

P[kN] D
C
B
3.0
] A
2.0
1.0
<
0.0,
[N N S D O O D Y B D O Y B N N B B |
= S ) =) o u[mm]
s E g g

Figure 39.2: Force-displacement work law of the non-linear spring

The elastic demand is an UBC 5% damped elastic response spectrum, whose properties are summa-

rized in Table 39.1. Two soil profile types are considered - soil profile type Sg and Sp.

The outcome of the analysis is shown in Figures 39.3 and 39.4.
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Figure 39.3: Capacity-Demand-Diagram (Soil Profile Type Sg)
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Figure 39.4: Capacity-Demand-Diagram (Soil Profile Type Sp)
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The results of the SOFiISTiK calculation and the comparison with the reference solution are summarized
in Table 39.2.

Table 39.2: Results

Eeff SRa SRy Sdy Say Sdp Sap
Soil type [%] [-]1 [-] [mm] [m/s?] [mm] [m/s?]
SOF. 9.4 0.80 0.84 51.30 2.62 85.04 3.23
Ss Ref. [36] 9.2 0.80 0.85 53.34 2.65 83.36 3.24
lel [%] 22 00 1.2 3.8 1.1 2.0 0.3
SOF. 14.6 0.65 0.73 59.86 3.06 149.34 3.57
Sp Ref. [36] 14.2 0.66 0.74 58.42 3.04 149.86 3.63
le] [%] 2.8 1.5 1.4 2.5 0.7 0.3 1.7

Eeff effective viscous damping of the equivalent linear SDOF system

SRqa, SRy spectral reduction factors in constant acceleration and constant velocity
range of spectrum

Sdy, Say  spectral displacement and spectral acceleration at yielding point

Sdps Sap  spectral displacement and spectral acceleration at performance point

The results are in excellent agreement with the reference solution. Small differences can mainly be
attributed to the approximate nature of the graphical procedure for the bilinear idealization of the capacity
used in the reference solution, while the procedure implemented in SOFILOAD is refrained from such
approximation and computes the hysteretic energy directly from the area underneath the capacity curve
and the coordinates of the performance point [37]. Apart from that, the performance point displacement
tolerance used in SOFILOAD is lower than the one used in the reference solution (1% compared to
5%).

39.4 Conclusion

Excellent agreement between the reference and the results computed by SOFiSTiK verifies that the
procedure for the calculation of the performance point according to ATC-40 is adequately implemented.

39.5 Literature

[86] ATC-40. Seismic Evaluation and Retrofit of Concrete Buildings. Applied Technology Council. Red-
wood City, CA, 1996.

[87] SOFILOAD Manual: Loads and Load Functions. Version 2018-0. SOFiSTiK AG. OberschleiBheim,
Germany, 2017.
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40 BE37: Beam Calculation of Varying Cross-Section ac-
cording to Second Order Theory

Element Type(s): B3D
Analysis Type(s): STAT, GNL
Procedure(s): STAB
Topic(s):
Module(s): ASE, STAR2, DYNA
Input file(s): beam_th2.dat

40.1 Problem Description

The problem consists of a column of continuously varying cross-section, subjected to a large compres-
sive force in combination with imperfections as well as horizontal and temperature loads, as shown in
Fig. 40.1. The forces and deflections of the structure, calculated according to second order theory, are
determined.

74
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Figure 40.1: Problem Description

40.2 Reference Solution

This example attempts to give a complete description of the forces and the deflections of a beam with
varying cross-section calculated with second order theory. As a reference solution, a general formulation
concept is adopted, where through the application of series functions, uniform formulas can be derived
to describe the beam behaviour of varying cross-section. In this concept, the cross-section properties
can vary according to a polynomial of arbitrary degree, the normal force, with respect to second order
theory, is assumed constant, the imperfections or predeformations as well as the temperature loads
are taken into account and the deformations due to moments and normal forces are treated. Further
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information on the reference solution can be found in Rubin (1991) [38].

40.3 Model and Results

The general properties of the model [38] are defined in Table 40.1 and the cross-sections in Table 40.2.
A general linear material is used and a linearly varying, thin-walled I-beam profile for the cross-section.
The shear deformations are neglected. A safety factor of 1.35 is used for the dead weight, giving a
total normal force of N = —0.5—0.0203 = —0.5203 MN. An imperfection of linear distribution with
maximum value of 60 mm at node E is applied, as well as one of quadratic distribution with maximum
value of —48 mm at the middle. The temperature load is given as a difference of temperature of 25°C,
between the left and the right side of the beam. The height of the cross-section is taken as the height of
the web only. Second order theory is utilised and the structure is analysed both with ASE and STAR2.

Table 40.1: Model Properties

Model Properties Loading
E=21MN/cm?,v4=1.35 V =500kN

¢0 =1/200, w0 =—48mm qe =6 kN/m, ga = 10 kN/m
ar=1.2x107°1/°K AT =Tright — Tieft =—25°C
[=12m,[*=4m H=20kN,H* =10kN

Table 40.2: Cross-sectional Properties

2 4
N Web [mm)] Flange [mm] Area [cm“] I, [cm®]
Position
h S b t
E 200 12 194 20 101.6 8560
* 300 12 260.7 20 140.27 26160.3
A 500 12 394 20 217.6 111000
: 351.9749 j ’“L 63.6704 1.6804
-134.3316 -502.3581 || 290.6423 :’ (:_‘ 5 9837 14745
2058536 5036908 1 2343069 |~ '(‘})53 3862 12880
2602468 ); 5051260 L 183.9025 |- §§47 3837 1.1066
-367.5970 }_ -506.6637 : 139.6055 : E 111822 0.9405
-458.1711 ‘: -508.3038 | | 1015628 L )34 9035 0.7844
o H , ] :
-552.2753 E -510.0463 | | 69.7797 ; 28.6793 0.6369
i;j:; I ”:; ;iwf . 44.1609 22 ﬂoV 0.4971
}_ 5 386 || 24 5562 16.6557 0.3642
8594299 F 515.6885 | _| J— 10.9134 0237 |
9713972 [ | 518.0408 || 2 6656 i
=) a
M [kN m] N [kN] w [mm] ¢ [mrad] u[mm]

Figure 40.2: Results with Twenty Four Beam Elements calculated by ASE
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The results are presented in Table 40.3, where they are compared to the reference solution according
to Rubin (1991) [38]. Fig. 40.2 shows the forces and deflections of the structure as they have been

calculated by ASE with twenty four beam elements.

Table 40.3: Results

Number of ol3 WE Ug Mg Na Ne Ngi
Elements [mrad] [mm] [mm]  [MNm] [MN]  [MN] [MN]
- Ref. [38] 67.70 423.50 —1.9050 —1.10 —0.5203 —0.50 —1.882
. ASE 63.8819 402.8733 —1.8937 —1.0816 —0.5202 —0.50 —1.9556

STAR2 82.1398 508.5219 —1.9288 —1.1352 —0.5203 —0.50 -
] ASE 65.8787 413.7793 —1.9018 —1.0871 —0.5203 —0.50 —1.8993

STAR2 70.0395 437.2366 —1.9108 —1.0990 —0.5203 —0.50 -
,,  ASE 665406 417.2853 —1.9045 —1.0888 —0.5203 —0.50 —1.8827

STAR2 66.7933 418.7001 —1.9050 —1.0895 —0.5203 —0.50 -
40.4 Conclusion

This example examines the behaviour of a tapered beam, treated with second order theory. The re-
sults, calculated both with ASE and STAR2, converge to the same solution as the number of elements
increases. Their deviation arises from the fact that ASE uses an exponential interpolation based on area
and inertia as well as numerical integration of the stiffness, while STAR2 uses the geometric mean value
of the stiffness. The first is slightly too stiff, the latter is too soft and therefore resulting on the safe side.
With a total of twenty four beam elements, the results are reproduced adequately. However, the obtained
solution deviates from the reference. The reason for that is the fact, that for second order effects, Rubin
has taken an unfavourable constant normal force of —520.3 kN for the whole column. If that effect is
accounted for, the results obtained with twenty four elements are:

Table 40.4: Results with Constant Normal Force

Number of oIS WEg Mg
Elements [mrad] [mm] [MN m]
- Ref. [38] 67.70 423.50 —1.100
04 ASE 67.657 423.27 —1.0995

STAR2 67.918 424.73 -—1.1002

In the case where the example is calculated with DYNA, where a constant normal force of —520.3kN
is considered as a primary load case, leading to linearised second order theory and therefore satis-
fying Rubin’s assumption, the results converge to the reference solution. The results, calculated with
DYNA and twenty four elements, are presented in Table 40.5. Furthermore, different single loadings are
examined and the results are given in Table 40.6.
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Table 40.5: Results with DYNA
Number of (PE WEg Ue MA NA NE
Elements [mrad] [mm] [mm] [MN m] [MN] [MN]
- Ref. [38] 67.70 423.50 —1.9050 —1.10 —-0.5203 -0.50

24 DYNA 67.6569 423.2766 -—1.9045 -—1.0994 -0.5203 -0.50

Table 40.6: Results with DYNA for Combination of Constant Normal Force and Single Loadings

Load Ok WE Mg
Case [mrad] [mm] [MN m]
H*, H 23.6779 148.3151 —0.3972
q 22.5896 163.3797 —-0.6130
AT 14.8218 77.1333 —0.0401
@O 2.6481 15.9532 —0.0395
wO 3.9194 18.4953 —0.0096
> 67.6569 423.2766 —1.0994

40.5 Literature

[38] H. Rubin. “Ein einheitliches, geschlossenes Konzept zur Berechnung von Staben mit stetig
verandlichem Querschnitt nach Theorie I. und Il. Ordnung”. In: Bauingenieur 66 (1991), pp. 465—
477.
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41 BE38: Calculation of Slope Stability by Phi-C Reduc-
tion

Element Type(s): C2D

Analysis Type(s): STAT, MNL

Procedure(s): LSTP, PHIC

Topic(s): SOIL

Module(s): TALPA

Input file(s): slope_stability.dat
41.1 Problem Description

In this benchmark the stability of an embankment, as shown in Fig. 41.1, is calculated by means of a
phi— c reduction. The factor of safety and its corresponding slip surface are verified.

slope

h,

| h ) Islope ) b |
\ 1 1 1

Figure 41.1: Problem Description

41.2 Reference Solution

The classical problem of slope stability analysis involves the investigation of the equilibrium of a mass of
soil bounded below by an assumed potential slip surface and above by the surface of the slope. Forces
and moments, tending to cause instability of the mass, are compared to those tending to resist instabil-
ity. Most procedures assume a two-dimensional cross-section and plane strain conditions for analysis.
Successive assumptions are made regarding the potential slip surface until the most critical surface, i.e.
lowest factor of safety, is found. If the shear resistance of the soil along the slip surface exceeds that
necessary to provide equilibrium, the mass is stable. If the shear resistance is insufficient, the mass
is unstable. The stability of the mass depends on its weight, the external forces acting on it, the shear
strengths and pore water pressures along the slip surface, and the strength of any internal reinforcement
crossing potential slip surfaces. The factor of safety is defined with respect to the shear strength of the
soil as the ratio of the available shear strength to the shear strength required for equilibrium [39]:

o available shear strength 1
B equilibrium shear stress “41.1)
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The safety definition according to FELLENIUS is based on the investigation of the material’s shear
strength in the limit state of the system, i.e. the shear strength that leads to failure of the system.

Following this notion, in SOFiSTiK, the safety factors according to phi— ¢ reduction are defined as the
ratio between available shear strength and the mobilized shear strength in the limit state of the system
[40]:

np=——" (412
tan ¢iim
Cin
Ne = —2 (41.3)
Clim

where c is the cohesion and ¢ the friction angle. The phi— c reduction stability analysis is based on an
incremental reduction of the shear strength adopting a synchronized increase of the safety factors n =
Nphi = Nc. The reached safety n at system failure represents the computational safety against stability
failure.

The reference solution [41] is based on the finite element formulation of the upper- and lower-bound
theorems of plasticity. Thus, the finite-element limit analysis (FELA) provides a good reference for the
strength reduction method as it establishes upper and lower-bound estimates for the true stability limit.

41.3 Model and Results

The properties of the model [41] are presented in Table 41.1. The embankment has a slope height of
10 m and a slope angle of 30°. The initial stresses are generated using gravity loading. Then the
embankment is subjected to the phi— ¢ reduction. Plane strain conditions are assumed.

Table 41.1: Model Properties

Material Properties Geometric Properties
E=20000kN/m?,v=0.3 h1 =20.0m

Y =19 kN/m3 hy =10.0m

¢ =25°, ¢ =25° l[1=6L=15.0m

¢ =20 kN/m? Ostope = 30°, lsiope = 17.321m
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Figure 41.3: Deviatoric strain for the factor of saftey obtained with the phi— c reduction analysis

Figure 41.2 presents the nodal displacement as a vector distribution for the factor of safety obtained
with the phi— ¢ reduction analysis. Furthermore, the corresponding plastic deviatoric strain is shown
in Figure 41.3. The calculated factor of safety is compared with the reference solution [41] in Table
41.2, i.e. with the results from the lower-bound and upper-bound finite element limit analysis (FELA).
Additionally, the calculated factor of safety from phi— c reduction analysis is plotted in Figure 41.4 as a
function of the nodal displacement in x direction for the node at the top of the embankment slope.

Table 41.2: Factor of saftey - calculated and reference values according to [41]

SOF|ST|K FEM FELAlower bound FELAupper bound

2.00 1.97 2.01
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Figure 41.4: Factor of safety as a function of displacement in x direction for the node at the top of the
embankment slope

41.4 Conclusion

This example verifies the stability of a soil mass and the determination of the factor of safety. The
calculated factor of safety, which is obtained with the phi— ¢ reduction method, is compared to the finite
element limit analysis results and it is shown that the behavior of the model is captured accurately.

41.5 Literature

[839] USACE Engineering and Design: Slope Stability. USACE. 2003.

[40] TALPA Manual: 2D Finite Elements in Geotechnical Engineering. 2018-0. SOFiSTiK AG. Ober-
schleiBheim, Germany, 2017.

[41] F Tschuchnigg et al. “Comparison of finite-element limit analysis and strength reduction tech-
niques”. In: Geotechnique 65(4) (2015), pp. 249-257.
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42 BE39: Natural Frequencies of a Rectangular Plate

Element Type(s): SH3D
Analysis Type(s): DYN
Procedure(s): EIGE
Topic(s):
Module(s): DYNA
Input file(s): freq_plate.dat
42.1 Problem Description

This problem consists of a rectangular plate which is simply supported on all four sides, as shown in Fig.
42.1. The eigenfrequencies of the system are determined and compared to the exact reference solution
for each case.

— a —

Figure 42.1: Problem Description

42.2 Reference Solution

The general formula to determine the eigenfrequencies of a simply-supported thin plate, consisting of a
linear elastic homogeneous and isotropic material is given by [29], [42]

)\m,nz gD
= —_— 42 1
fm,n o \ h (42.1)

m? n?
Amn’ = m? (— + —) (42.2)

where

and D is the flexural rigidity of the plate
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Eh3
D=——— (42.3)
12(1—v32)
Combining the above equations gives
f T ,  ,a? g Eh3 ioa
=— | m +n°— — T 5% .
M= 2q2 b2 ) \ yh12(1—12) (42.4)

where a, b the dimensions of the plate, h the thickness and yh/g the mass of the plate per unit area.
The values of )\m,nz for the first five combinations of m, n are given in Table 42.1 for a simply-supported
plate.

Table 42.1: Dimensionless parameter Am,n?

m n Am.n? Mode number
1 1 32.08 1
2 1 61.69 2
1 2 98.70 3
3 1 111.03 4
2 2 128.30 5

42.3 Model and Results

The properties of the model are defined in Table 42.2 and the resulted eigenfrequencies are given in
Table 42.3. The corresponding eigenforms are presented in Fig. 42.2.

Table 42.2: Model Properties

Material Properties Geometric Properties
E =30000 MPa a=4.5m

Y =80 kN/m3 b=3.0m

v=0.3 h=0.02m

Table 42.3: Results

Eigenfrequency Number SOF. [Hz] Ref. [HZ] |er|[%]
1 2.941 2.955 0.476
2 5.623 5.682 1.047
3 9.200 9.091 1.197
4 10.206 10.228 0.214
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Table 42.3: (continued)

Eigenfrequency Number SOF. [Hz] Ref. [Hz] |er| [%]

5 11.706 11.819 0.954

Mode 5

Figure 42.2: Eigenforms

42.4 Conclusion

The purpose of this example is to verify the eigenvalue determination of plate structures modelled with
plane elements. It has been shown that the eigenfrequencies for a simply-supported thin rectangular
plate are calculated accurately.

42.5 Literature

[29] S. Timoshenko. Vibration Problems in Engineering. 2nd. D. Van Nostrand Co., Inc., 1937.
[42] Schneider. Bautabellen fiir Ingenieure. 19th. Werner Verlag, 2010.
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43 BEA40: Portal Frame

Overview

Element Type(s): B3D
Analysis Type(s): STAT, GNL
Procedure(s):
Topic(s):
Module(s): ASE
Input file(s): frame.dat
43.1 Problem Description

The problem consists of a rigid rectangular frame, with an imperfection at the columns, subjected to
a uniform distributed load g across the span and to various single loads, as shown in Fig. 43.1. For
the linear case, the structure is subjected to the uniform load only, whereas for the nonlinear case, all
defined loads including the imperfection are considered. The response of the structure is determined
and compared to the analytical solution.

6
—»

% q )
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—
2 Ip
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mnl T

N| l N|

¥ ™

Figure 43.1: Problem Description

43.2 Reference Solution

For the linear case, where only the distributed load is considered, the moments M are determined in
terms of the shear force H as follows:
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He = H qt 431

1T Ahk+ 2) (43.1)
Hh

M1=M; = — (43.2)

M3z =M4 =M1 —H1h (43.3)

where k = Iph / Icl. For the nonlinear case, in order to account for the effect of the normal force and
the imperfections on the determination of the resulting forces and moments, second order theory has
to be used. The moments at nodes 1 — 4 are determined in dependency of the column characteristic
ratio € = [/ N/EI., giving the influence of the normal force N = F + ql/2 with respect to the column
properties, length [ and bending stiffness EI.. Further information on the analytical formulas can be
found in Schneider [42].

43.3 Model and Results

The properties of the model are defined in Table 43.1. The frame has an initial geometrical imperfection
at the columns of linear distribution ¢g = 1/200, with a maximum value of 25 mm at nodes 3 and
4. The normal force N, used to determine €, is calculated to be 430 kN at the columns and the ratio
€ = 1.639. For the linear case the results are presented in Table 43.3 and they are compared to
the analytical solution calculated from the formulas presented in Section 43.2. For the nonlinear case,
the results are presented in Table 43.2 and they are compared to the reference example provided in
Schneider [42].

Table 43.1: Model Properties

Material Properties Geometric Properties Loading

EI. = 6000 kNm? [=6m qg=10kN/m

EI, = 4000 kNm? h=5m H=20kN
Yo =1/200 F = 400 kN

Table 43.2: Nonlinear Case Results

Ref. [42]  SOF.

My [kN m] 38.2 38.62
Ma [kN m] 22.5 22.52
M3 [kN m] 58.1 58.02
Mg [kN m] 58.8 58.79
& [mm] 65.3 65.44
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Figure 43.2: Bending Moments

Table 43.3: Linear Case Results

Ref. [Sect.43.2] SOF.

H1 = H> [kN] 5.54 5.52

My = M3 [kKN m] 9.23 9.18

M3 = Mg [KN m] 18.46 18.43
Linear Case Nonlinear Case

[

Figure 43.3: Deformed Shape

43.4 Conclusion

This example examines a rigid frame under different loading conditions. It has been shown that the
behaviour of the structure is captured accurately for both the linear and the nonlinear analysis.

43.5 Literature

[42] Schneider. Bautabellen fiir Ingenieure. 19th. Werner Verlag, 2010.
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44 BE41: Linear Pinched Cylinder

Element Type(s): C3D
Analysis Type(s): STAT
Procedure(s):
Topic(s):
Module(s): ASE
Input file(s): cylinder.dat
441 Problem Description

The problem consists of a thin cylinder shell with rigid end diaphragms, which is loaded in its middle by
two oppositely directed radially point loads, as shown in Fig 44.1. The maximum deflection at the center
of the cylinder, under the point loads, is determined and verified for refined meshes [43].

Figure 44.1: Problem Description

44.2 Reference Solution
There is a convergent numerical solution of w = 1.8248-107> for the radial displacement at the loaded

points, as given by Belytschko [44]. This problem is one of the most severe tests for both inextensional
bending and complex membrane states of stress [45] .

44.3 Model and Results

The properties of the model are defined in Table 44.1. The geometric parameters and the material are
all dimensionless. The compressive point load p = 1.0 is applied radially and in opposite directions at
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the middle nodes of the cylinder, as shown in Fig. 44.1. Using symmetry, only one-eighth of the cylinder
needs to be modeled, as shown in Fig. 44.2. For the simplified model only one fourth of the load p *
is applied at the the upper middle node, as it can be visualised in Fig. 44.2. The end of the cylinder is
supported by a rigid diaphragm [46], while at the two edges of the cylinder, parallel to the x- and y- axis,
symmetry support conditions are employed. In the plane of middle of the cylinder, the displacements in
the longitudial direction, as well as the rotations around x- and y- axis are fixed. The example allows
the verification of the calculation of thin shells with increasingly refined regular meshes.

Table 44.1: Model Properties

Material Properties Geometric Properties Loading

E=3.0-10°MPa L=600,(=300 p=1.0

u=0.30 r=300 p* =0.25
t=3

Figure 44.2: FEM model

Table 44.2: Normalised Point-Load Displacement w/wq with Mesh Refinement

Element/Side Conforming Element  Non-Conforming Element
4 0.4525 0.5917
8 0.8214 0.9057
16 0.9701 1.0082

The results are presented in Fig 44.3 and Table 44.2, where they are compared to the analytical solution
as presented in Section 44.2. Two element formulations are considered. The first one, represented by
the red curve, corresponds to the 4-node regular conforming element whereas the second, represented
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by the purple curve corresponds to the non-conforming element with six functions, offering a substantial
improvement of the results.

1.2
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Figure 44.3: Convergence Diagram
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Figure 44.4: Deformed Shape

44.4 Conclusion

The example allows the verification of the calculation of thin shells. For increasing refined meshes,
the calculated result for both types of elements convergence fast to the predetermined analytical solu-
tion. The advantage of the utilisation of the non-conforming element is evident, since it is in excellent
agreement with the analytical solution for a refined mesh.
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44.5 Literature

[43] VDI 6201 Beispiel: Softwaregestlitze Tragwerksberechnung - Beispiel Zylinderschale mit starren
Endscheiben, Kategorie 1: Mechanische Grundlagen. Verein Deutscher Ingenieure e. V.

[44] T. Belytschko et al. “Stress Projection for Membrane and Shear Locking in Shell Finite Elements”.
In: Computer Methods in Applied Mechanics and Engineering 53(1-3) (1985), pp. 221-258.

[45] T. Rabczuk, P. M. A. Areias, and T. Belytschko. “A meshfree thin shell method for non-linear
dynamic fracture”. In: International Journal for Numerical Methods in Engineering 72(5) (2007),
pp. 524-548.

[46] P. Krysl and T. Belytschko. “Analysis of thin shells by the element-free Galerkin method”. In: Inter-
national Journal for Solids and Structures 33(20-22) (1996), pp. 3057-3080.
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45 BE42: Thick Circular Plate

Overview

Element Type(s): C3D

Analysis Type(s): STAT

Procedure(s):

Topic(s):

Module(s): ASE

Input file(s): thick_plate.dat
45.1 Problem Description

The problem consists of a circular plate with a constant area load, as shown in Fig. 45.1. The system
is modelled as a plane problem and the deflection in the middle of the plate is determined for various
thicknesses [47].

Figure 45.1: Problem Description

45.2 Reference Solution

Depending on the various thicknesses of the plate, the maximum deflection w in the middle of the
plate can be obtained as w = wg + ws, where wpg is the dislacement due to bending and ws is the
displacement due to shear strains, determined as follows [48]:

. r4
wg =" G+ (45.1)
64-K (5+ 1)
/<——E'h3 45.2
T 12(1—p?) (45.2)
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1.2-p-r?

Ws = 45.3
S=1Gh (45.3)

where p is the load ordinate, r the radius, E the elasticity modulus, h the plate thickness, u the Poissons
ratio and G the shear modulus.

The maximum bending moment at the middle of the plate is independent of the plate thickness and
corresponds for the specific load case to

.

16

My = M, = P (3+u)=4928.125  [kNm/m] (45.4)

45.3 Model and Results

The properties of the model are defined in Table 45.1. The plate is modelled as a plane system with
three degrees of freedom, uz, ¢x, ¢y, per node and u; hinged at the edge, as shown in Fig. 45.1. The
weight of the system is not considered. A constant area load p = 1000 kN/m? is applied, as shown
in Fig. 45.1. The system is modelled with 1680 quadrilateral elements, as presented in Fig. 45.2, and
a linear analysis is performed for increasing thicknesses. The results are presented in Table 45.2 where
they are compared to the analytical solution calculated from the formulas presented in Section 45.2 and
the influence of the varying thickness is assesed.

Table 45.1: Model Properties

Material Properties Geometric Properties Loading

E =3000 kN/cm? h=0.5—2.5m p = 1000 kN/m?
G = 1300 kN/cm? r=5m

u=0.154 D=10m

Figure 45.2: FEM model

The maximum bending moment is calculated at the middle of the plate, as Mx = M, = 4932.244
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[kNm/m] with a deviation of 0.08 %.
Table 45.2: Results

h[m] h/D  Analytical u; [mm] SOF. u; [mm] |er| [%]

0.50 0.05 137.413 137.440 0.02

1.00 0.10 17.609 17.618 0.05

1.50 0.15 5.431 5.437 0.11

2.00 0.20 2.418 2.421 0.14

2.50 0.25 1.321 1.324 0.23

Figure 45.3: Displacements

45.4 Conclusion

The example allows the verification of the calculation of thick plates. It has been shown, that the calcu-
lated results are in very good agreement with the analytical solution even for thicker plates.

45.5 Literature

[47] VDI 6201 Beispiel: Softwaregestiitze Tragwerksberechnung - Beispiel Dicke Platte, Kategorie 1:
Mechanische Grundlagen. Verein Deutscher Ingenieure e. V.

[48] F U. Mathiak. Ebene Flachentragwerke Teil Il, Grundlagen der Plattentheorie. Hochschule
Neubrandenburg. 2011.
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46 BE43: Panel with Circular Hole

Overview

Element Type(s): C3D

Analysis Type(s): STAT

Procedure(s):

Topic(s):

Module(s): ASE

Input file(s): structured_mesh.dat , unstructured_mesh.dat
46.1 Problem Description

The problem consists of a rectangular panel with a circular hole in its middle, loaded by a constant linear
load p on the vertical edges, as shown in Fig. 46.1. The system is modelled as a plane stress problem
and the maximum stress at the edge of the hole is determined and verified for various meshes [49].

~— \T\ — —
— YAn h —
D C}v r "
p i £ P =L a p
h
N L/2 — L/2 —F%

Figure 46.1: Problem Description

46.2 Reference Solution

The maximum stress 0a,xx,max resulting from a load p, at the edge of the hole can be determined at
points A and A’ across a vertical cut, visualised in Fig. 46.1, as follows [50] [51]:

0a,xx,max = Kt * Oxx,nom (46.1)
where
P=p-D=1000 [kN] (46.2)
P 33.33 [N/mm?] (46.3)
o =—— =33. mm .
xXx,nom t°(D—d)
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Kt =3.000—3.140-(d/D) + 3.667 - (d/D)2 — 1.527 - (d/D)3, (0<d/D<1) (46.4)

46.3 Model and Results

The properties of the model are defined in Table 46.1. Plane stress conditions are assumed, with two
degrees of freedom, ux, uy, per node, and a line load p = 200.0 kN/m is applied at both vertical
ends. The length of the panel is considered to be large enough in order to avoid any disturbances in the
area of the hole, due to the loaded ends. Due to symmetry conditions only one fourth of the panel is
modelled.

Table 46.1: Model Properties

Material Properties Geometric Properties Loading
E=2.1-10°MPa L=15.00m p=200.0kN/m
v=0.30 D=5.00m,d=2.00m

h=150m,t=0.01m

[44] [310]
[168] , _ ‘ ’ ; [390]
(a) Structured Meshing
L i
(44 [424)

(b) Unstructured Meshing
Figure 46.2: FEM Models
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Four manually structured meshes, with refinement around the hole area, are considered, shown in Fig.
46.2(a), with increasing number of quadrilateral elements and the convergence behaviour is evaluated.
For the sake of comparison, unstructured meshes, shown in Fig. 46.2(b), are also considered. The
number of degrees of freedom for every mesh is given in the red brackets. The results are presented
in Fig 46.3 where they are compared to the analytical solution calculated from the formulas presented
in Section 46.2. For the case of structured meshing two element formulations are considered. The first
one, represented by the red curve, corresponds to the 4-node regular conforming element whereas the
second, represented by the purple curve corresponds to the non-conforming element with six functions.
The blue curve represents the unstructured meshing.
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S 55| |
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S
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Analytical: 74.43 [ N/mm?]
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Figure 46.3: Convergence Diagram
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Figure 46.4: Maximum Stresses Oxx, max

The regular 4-node element is characterised through a bilinear accretion of the displacements and
rotations. This element is called conforming, because the displacements and the rotations between
elements do not have any jumps. The results at the gravity centre of the element represent the actual
internal force variation fairly well, while the results at the corners are relatively useless, especially the
ones at the edges or at the corners of a region. On the other hand the non-conforming elements, are
based one the idea of describing more stress states through additional functions that their value is zero
at all nodes. As a rule, these functions lead to a substantial improvement of the results, however, they
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violate the continuity of displacements between elements and thus they are called non-conforming.

46.4 Conclusion

The example allows the verification of the calculation of plane stress problems and the convergence be-
haviour of quadrilateral elements. For both types of elements, the calculated results convergence rather
fast to the predetermined precise analytical solution, within acceptable tolerance range. Furthermore, it
is evident that the unstructured mesh, which is a more often choice in practice, gives results which are
in very good agreement with the analytical solution.

46.5 Literature

[49] VDI 6201 Beispiel: Softwaregestiitze Tragwerksberechnung - Beispiel Scheibe mit kreisférmigem
Loch - Konvergenztest fiir Scheibenelemente, Kategorie 1: Mechanische Grundlagen. Verein
Deutscher Ingenieure e. V.

[50] C. Petersen. Stahlbau. Grundlagen der Berechnung und baulichen Ausbildung von Stahlbauten.
Vieweg, 1997.

[51] W.D. Pilkey. Formulaes for Stress, Strain and Structural Matrices. Wileys & Sons, 1994.
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47 BE44: Undrained Elastic Soil Layer Subjected to Strip
Loading

Element Type(s): C2D

Analysis Type(s): STAT

Procedure(s):

Topic(s): SOIL

Module(s): TALPA

Input file(s): soil_layer_el_undr.dat
47.1 Problem Description

The example concerns the behavior of the rectangular soil layer subjected to an uniform strip loading of
intensity p acting on the surface. Base of the soil is rigidly fixed while the sides are laterally constrained.
Geometry, load and boundary conditions are depicted in Fig. 47.1. The soil material is elastic, isotropic
and saturated with water. Two soil conditions have been analyzed - drained and undrained. The drained
and undrained displacements and stresses obtained by the finite element method are compared with
the analytical solution.

a | 4a

A

C

i
i
i
i
i
i
i
.
v
|
i

Figure 47.1: Problem Definition

47.2 Reference Solution

The analytical solution to the problem obtained using a Fourier series analysis is provided in [52].

47.3 Model and Results

Elastic, isotropic soil under drained and undrained conditions has been analyzed. Material, geometry
and loading properties are summarized in Table 47.1. The undrained soil condition is considered with
the help of the method based on the undrained effective stress (0’) analysis using effective material
parameters. G and Vv’ are effective soil parameters, while B represents the Skempton’s B-parameter.
Self-weight is not taken into consideration.
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Table 47.1: Model Properties

Material Geometry Loading
G,v' =0.3 a o}

B =0.998 h=4a

0 =0.0 kg/m3

Finite element mesh of the model is shown in Fig. 47.2. Mesh is regular and consist of quadrilateral
finite elements.

Figure 47.2: Finite Element Model

The drained and undrained vertical displacement of the surface nodes along the A—B line are compared
with the analytical solution from [52] and depicted in Fig. 47.3.

—0.1 - -
—— analytical, drained

m fem, drained
—— analytical, undrained
e fem, undrained

0.2

0.3 | | |
0 1 2 3 4

x/a

Figure 47.3: Vertical displacement uy, of the surface

The drained and undrained horizontal and vertical total stresses (0 = 0’ + pwe) in the nodes along the
vertical A—C line have been computed and compared with the analytical ones, as show in Figures 47.4a
and 47.4b.

194 VERIFICATION - Mechanical Benchmarks | SOFiSTiK 2022



29
PERX

"‘ % = =
BE44: Undrained Elastic Soil Layer Subjected to Strip Loading e S O F L S T - K

0 ® 0
0.2 - = 0.2
0.4 - : 0.4 |

y/h y/h

0.6 - = 0.6 -
0.8 |- = 0.8 |-

1 | | | | 1 | |

0 -0.2 -0.4 -0.6 -0.8 -1 —0.6 —-0.7 —0.8 —0.9 -1
ox/p oy/p
(a) Horizontal stress ox (b) Vertical stress oy,

Figure 47.4: Stresses beneath footing center

Pore excess pressure (pwe) distribution for the undrained condition along the center line (A — C) is
shown in Fig. 47.5.

y/h

1 | |
—-0.4 —0.6 —0.8 -1

Pwe/P

Figure 47.5: Excess pore pressure pwe beneath footing centre

47.4 Conclusion

This example verifies that the drained and undrained displacements and stresses obtained by the finite
element method are in a good agreement with the analytical solution.

47.5 Literature

[52] J.R. Booker, J.P. Carter, and J.C. Small. “An efficient method of analysis for the drained and
undrained behaviour of an elastic soil”. In: International Journal of Solids and Structures 12.8
(1976), pp. 589 —599.
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48 BE45: One-Dimensional Soil Consolidation

Element Type(s): C2D

Analysis Type(s): STAT

Procedure(s):

Topic(s): SOIL

Module(s): TALPA

Input file(s): soil_1d_consolidation.dat
48.1 Problem Description

In the following example a one-dimensional consolidation problem has been analyzed. The soil layer is
subjected to an uniform loading of the intensity po acting on the surface. Base of the soil is rigidly fixed
while the sides are laterally constrained. Only the soil surface is allowed to drain. Geometry, load and
boundary conditions are depicted in Fig. 48.1. The soil material is elastic, isotropic and saturated with
water. The surface settlements and pore excess pressures for the two extreme cases (time zero and
time infinity) of the consolidation process are compared to the analytical solution.

w

Po

A
\

l GI V,I VUI p

L0777 7777777777777 7777777777777/ 77777777777/

Figure 48.1: Problem Definition

48.2 Reference Solution

The analytical solution to the problem was given by Terzaghi in 1925 [53]. The solution assumes that the
soil is saturated with water, the soil and water are non-deformable, the volume change takes place only
on the account of the water drainage and the Darcy’s filtration law applies. Then the differential equation
of the one-dimensional process of consolidation for the excess water pressure pye can be written as
[54]:

dPwe 3% pwe
=cC , 48.1
at Y 922 (48.1)
where:
Ccyv=k-Es/Yw coefficient of consolidation,
Es stiffness modulus,
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k coefficient of permeability,
Yw unit weight of water,
h soil thickness,
z=h-—y elevation.

Taking into account the initial and boundary conditions for the problem illustrated by Fig. 48.1

t=0 and 0<z<h = Pwe = Po, (48.2a)
5}
0<t<o and z=0 = ,Zwe =0, (48.2b)
z
0<t<o and z=h = pPwe =0, (48.2¢c)
t=o00 and 0<z< = Pwe =0, (48.2d)

the Eqg. 48.1 can be analytically solved for pwe as a function of the time t and the elevationz=h—y

pwift ) _ % io -sin ((2j+ 1)2%)@—(2“1)2"2/4'” (48.3)
where:
Po surface pressure,
Ty =cy/h?-t time factor.

With the known change of excess pore pressure with respect to time, the settlement due to consolidation
s(t) at time t can be determined

Po 22
s(t) = e~ (@) m/ATy | 48.4
© n2 Z (2/+ 1)2° us.4)

For the time infinity, the excess pore pressures will completely dissipate (see Eqg. 48.2d) and the final
settlements due to consolidation s will be

poh

s

Soo=s(t=oo)=

(48.5)

48.3 Model and Results

Elastic, isotropic soil under undrained and drained conditions has been analyzed. Material, geometry
and loading properties are summarized in Table 48.1. The undrained soil condition is considered with
the help of the method based on the undrained effective stress (0”) analysis using effective material
parameters. G and Vv’ are effective soil parameters, while B represents the Skempton’s B-parameter.
Self-weight is not taken into consideration.
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Table 48.1: Model Properties

Material Geometry Loading
G,v' =0.0 h Po

B =0.998 w=h

0 =0.0 kg/m3

Finite element mesh of the model is shown in Fig. 48.2. Mesh is regular and consist of quadrilateral
finite elements.

Figure 48.2: Finite Element Model

The results are summarized in the Table 48.2. Final settlement of the surface of the soil due to consol-
idation s« is compared to the analytical solution given by Eq. 48.5. The excess water pressures pwe
for the time zero (T = 0, undrained) and time infinity (T, = oo, drained) are compared to the analytical
solutions from Egs. 48.2a and 48.2d.

Table 48.2: Results

Tv=0 le] Ty =00 le|
SOF. Ref. [—1] SOF. Ref. [—]

s(Tv)-Es/(poh) [-] - 1.0 1.0 0.0
pwe(Tv)/Po [—] 0.994 1.000 0.006 0.000 0.000 0.000

48.4 Conclusion

The example verifies that the settlements and excess pore pressures for initial (¢t = 0) and finial (t = 00)
time of the consolidation process obtained by the finite element method are in a good agreement with
the analytical solution.
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48.5 Literature

[63] K. Terzaghi. Erdbaumechanik auf bodenphysikalischer Grundlage. Leipzig (usw.): F. Deuticke,
1925.
[54] K. Terzaghi. Theoretical Soil Mechanics. Wiley, 1948.
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49 BE46: Material Nonlinear Analysis of Reinforced Con-
crete Beam

Element Type(s): B3D, SH3D

Analysis Type(s): STAT, MNL

Procedure(s):

Topic(s):

Module(s): STAR2, ASE

Input file(s): nonl_rein_conc.dat
49.1 Problem Description

The problem consists of a single span beam of reinforced concrete, subjected to a single load P in the
middle of the span, as shown in Fig. 49.1. The material nonlinear behaviour of the beam is examined
and compared to test results.

— b —
P To °
h
L) Ay
D l * l I i- °

Figure 49.1: Problem Description

49.2 Reference Solution

Materially nonlinear analysis is utilised more and more for the structural design in concrete construction.
It is often overlooked that for such analysis, both in-depth knowledge of the computational algorithms as
well as the behavior of the concrete in cracked condition, are required. The following simple example will
serve for verification of material nonlinear calculations of reinforced concrete beams. It will also highlight
the unavoidable variations in practice. Therefore, the individual test results are given below and not
only the mean values. The load-displacement curves of seven identical concrete beams, which were
prefabricated almost at the same time and under the same controlled conditions, are graphed below. As
a reference solution, these load-displacement curves of the test beams are used.

49.3 Model and Results

The properties of the model [55] are defined in Table 49.1. The simply supported beam is shown in
Fig. 49.1, as well as the dimensions and the reinforcement of the beams. The total length of the span
is ltotal = 3.0 m. The square rectangular cross-section with edge lengths of 20 ¢m is reinforced by
four longitudinal bars of @ 10 mm and stirrups of @ 6-15 c¢cm. For this example the stirrups are not
influential and can be neglected. The load is applied at the midspan and the beam is loaded to failure.
Self weight is accounted for. The material properties of the concrete, B 35 or equivalently a C 35, were
determined on a total of twelve cylinders @ 150/300, and are given in Table 49.1. The concrete cover
of the longitudinal reinforcement is ¢y,; = 2.4 cm. The reinforcing steel is a BST 500 S, following a
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stress-strain law, as shown in Fig. 49.2.

The results are presented in Fig. 49.4. The deflection in the middlespan is recorded and plotted versus
the load. The expectance is for the numerical calculations to fall into the gray shaded area, which bounds
the curves of seven tests beams. Of particular importance, are the onset of cracking, the slope after the
completion of the cracking and by the yielding of the reinforcement, as well as the limit load.

SOFiSTiK results are presented by the three additional curves included in the original figure.

For beam elements: (a) yellow color with triangles for concrete C 35, (b) red color with circles for
concrete B 35. For quad elements: (c) green color with squares for concrete C 35.

Strain Stress
mm/m N/mm? 700
0.00 0.0 . 600
1.07 213.0 = )
2.00 395.9 £ 900 l
3.04 517.0 Z 400
4.04 539.4 @ I
5.00 551.7 g 300 I
6.10 560.9 n
7.10 566.2 200
10.07 574.9 100
20.01 589.4 0
2882 282; 0 10 20 30 40 50 60
55.05 604.4 Strain mm/m
58.19 512.2

Figure 49.2: Stress-Strain Curve for Reinforcing Steel

MPa MPa |
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Figure 49.3: Stress-Strain Curve for Concrete
Table 49.1: Model Properties

Material Properties Geometric Properties Loading
Concrete Steel b=h=20.0cm P=1kN
B 35o0rC 35 BST 500S [=3.0m until failure
p =2320 kg/m3 Cv, =2.4cm
fem =54.0 MN/m? 4 bars @ 10 mm
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Table 49.1: (continued)

Material Properties Geometric Properties Loading

E =28000 MN/m?

25

Load [kN]

—— Beam
—— Beam with TS |
—=— Quad

0
0 10 20 30 40 50 60 70 80 90 100

Deflection [mm]

Figure 49.4: Load-Displacement Curves
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Figure 49.5: Load-Displacement Curves with reloading

49.4 Conclusion

This example examines the material nonlinear analysis of reinforced concrete beams. It has been shown
that the behaviour is captured accurately.

49.5 Literature

[65] VDI 6201 Beispiel: Softwaregestiitze Tragwerksberechnung - Beispiel Stofflich nichtlineare
Berechnung von Stahlbetonbalken, Kategorie 1: Mechanische Grundlagen. Verein Deutscher In-
genieure e. V.
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50 BEA47: Pushover Analysis: SAC LA9 Building

Element Type(s): B3D

Analysis Type(s): MNL

Procedure(s): EIGE

Topic(s): EQKE

Module(s): ASE, SOFILOAD

Input file(s): pushover_sac_la9.dat
50.1 Problem Description

In this example a pushover analysis of a moment resisting frame structure is performed. The pushover
curve is identified and compared to the reference solution, as described in Chopra [56].

TAN TAN TAN TAN TAN TAN

Figure 50.1: Problem Description

50.2 Reference Solution

In this Benchmark the interest is focused in the retrieval of the pushover curve. The steps involved in this
process are described schematically in Figure 50.2. Important is the definition of the pushover lateral
load case pattern. The pushover analysis is performed by subjecting the structure to this monotonically
increasing load pattern of lateral forces. Here the first three eigenmodes of the structure will be used.
Choosing the characteristic force and displacement of the structure, a so called pushover curve of the
multi-degree-of-freedom (MDOF) system can be obtained. The force, here denoted as Vp, is usually
base-shear, while the displacement is a displacement of the characteristic point on the structure ucnoq,
also called the roof displacement and the control node displacement.

50.3 Model and Results

The properties of the model are presented in Table 50.1 and Figure 50.3. The model utilised in this
Benchmark consists of the benchmark structure for the SAC project, as has been described by Gupta
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Figure 50.2: Pushover curve determination workflow

and Krawinkler [57], Chopra and Goel [56] and FEMA [58].

“The 9-story structure, was designed by Brandow & Johnston Associates for the SAC2 Phase Il Steel
Project. Although not actually constructed, this structure meets seismic code and represents typical
medium-rise buildings designed for the Los Angeles, California, region. The building is square in plan
and rises nine floors above ground in elevation. The bays are 9.15 m on center, in both directions,
with five bays each in the north-south (N-S) and east-west (E-W) directions. The buildingd€™s lat-
eral load-resisting system is composed of steel perimeter moment-resisting frames (MRFS) with simple
(simple hinged connection) framing on the farthest south E-W frame. The columns are steel wide-flange
sections. The levels of the 9-story building are numbered with respect to the ground level, with the ninth
level being the roof. The building has a basement level, denoted B-1. The column lines employ two-tier
construction, i.e., monolithic column pieces are connected every two levels beginning with the first level.
Column splices, which are seismic (tension) splices to carry bending and uplift forces, are located on the
first, third, fifth, and seventh levels at hs = 1.83 m above the center-line of the beam to column joint.
The column bases are modeled as pinned and secured to the ground (B-1). Concrete foundation walls
and surrounding soil are assumed to restrain the structure at the ground level from horizontal displace-
ment. The floor system is composed of steel wide-flange beams in acting composite action with the floor
slab. Each frame resists one half of the seismic mass associated with the entire structure. The seismic
mass of the structure is due to various components of the structure. The model is based on centerline
dimensions of the bare frame in which beams and columns extend from centerline to centerline. The
strength, dimension, and shear distortion of panel zones are neglected.” [56]

“Shear deformations in beam and column elements are neglected. Plastic zones in beams and columns
are modeled as point hinges. The hysteretic behavior at plastic hinge locations is described by a bilinear
moment-rotation diagram. All elements have 3% strain hardening. Expected rather than nominal yield
strength values are used (49.2 ksi for A 36 steel and 57.6 ksi for A 50 steel). Viscous damping 2%
is used in first mode and at T = 0.2 sec.” [58]

Table 50.1: Model Properties

Material Geometry
A50 [=9.15m
A 36 hp=3.65m, hg =5.49m
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Table 50.1: (continued)

Material Geometry

hf=3.96m, hs=1.83m
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Figure 50.3: Model Description
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Figure 50.4: Eigenmodes

Table 50.2: First three natural-vibration periods

Periods Ref. [56] SOF.
T1 2.27 2.26
T2 0.85 0.85
T3 0.49 0.49
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Figure 50.5: Pushover Curves

The first three vibration modes and periods of the building for linearly elastic vibration are shown in
Figure 50.4. The vibration periods are 2.26, 0.85, and 0.49 sec, respectively. The force distributions
of these first three modes are used in the pushover analysis in order to retrieve the pushover curves.
The pushover curves for the first three eigenmodes, are presented in Figures 50.5. The hinge formation
distribution for each pushover analysis, corresponding to approximatelly the last load case depicted in
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each pushover curve, is presented in Figures 50.6.
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Figure 50.6: Hinge distribution

50.4 Conclusion

This example adresses the determination of the pushover curve for a benchmark structure. It has been
shown that the results obtained are in a good agreement with the reference given by Chopra [56].

50.5 Literature

[56] A.K. Chopra and R. K. Goel. A Modal Pushover Analysis Procedure to Estimate Seismic De-
mands for Buildings: Theory and Preliminary Evaluation. Tech. rep. PEER Report 2001/03. Pacific
Earthquake Engineering Research Center - University of California Berkeley, 2001.

[57] A. Gupta and H. Krawinkler. Seismic Demands for Performance Evaluation of Steel Moment Re-
sisting Frame Structures. Tech. rep. Report No. 132. The John A. Blume Earthquake Engineering
Center, 1999.

[58] Prepared for the SAC Joint Venture Partnership by Helmut Krawinkler. State of the Art Report on
Systems Performance of Steel Moment Frames Subject to Earthquake Ground Shaking. Tech. rep.
FEMA-355C. Federal Emergency Management Agency (FEMA), 2000.
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51 BE48: Triaxial Consolidated Undrained (CU) Test

Overview

Element Type(s): CAXI

Analysis Type(s): MNL

Procedure(s): LSTP

Topic(s): SOIL

Module(s): TALPA

Input file(s): triaxial_cu_test.dat, triaxial_cu_test_200.dat
51.1 Problem Description

In this example a consolidated undrained (CU) triaxial test on a loose Hostun-RF sand is simulated. The
specimen is subjected to different levels of triaxial confining stresses and the results are compared to
those of the experimental tests and numerical simulations, as described in Wehnert [59].

Figure 51.1: Problem Description

51.2 Reference Solution

In this example two soil models are utilised, the Mohr-Coulomb (MC) and the Hardening Soil (HS) model.
Further details on these two models can be found in Benchmarks 20 and 21.

The choice of the appropriate model for the soil is of a significant importance. For example, MC model
can significantly overestimate the undrained shear strength for a normally consolidated soil. More ad-
vanced models can provide better estimate for the undrained strength than the MC model. In partic-
ular, the HS model is able to represent the change of the excess pore water pressure occurring un-
der undrained shear loading conditions, providing more realistic effective stress paths and values for
undrained shear strength. However, the results of the analysis with the Hardening Soil model are very
sensitive to the used model parameters and the choice of the dilatancy model. Therefore, in this example
for the HS model different dilatancy formulations are tested and their influence on the result examined.

A well-established stress dilatancy theory is described by Rowe [60], where the so-called mobilized
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dilatancy angle ¢, is defined as

sin —sin
Sin Yy = —om 21 0cs (51.1)
1—singmsin@cs

Therein, the critical state friction angle ¢s marks the transition between contractive (small stress ratios
with @ m < @¢s) and dilatant (higher stress ratios with ¢ > @¢s) plastic flow. The mobilized friction
angle @m in Equation 51.1 is computed according to

/

3
(51.2)
/ /
2c-cotp—o0;— 03

/—
01 o

singpm =

At failure, when @, = @, also the dilatancy angle reaches its final value ¢, = . Accordingly, from
Equation 51.1 the critical state friction angle can be derived as
sing—siny

sin =— 51.3
Pes 1—singsiny ( )

It has been recognized that in some cases the Rowe’s model for dilatancy angles (Eq. 51.1) can over-
estimate the contractive behavior of the soil at low mobilized friction angles, ¢m < @cs. As a remedy,
several researchers have developed modified formulations based on the original Rowe’s model. Some
of these models which are implemented in SOFiSTIK are described below.

One of the models which does not require additional input parameters is the model according to Soreide
[61] which modifies the Rowe’s formulation by using the scaling factor sin @m/sin @

Sinem—sSin@cs  Sinem
1—singmsinges sing

sinym = (51.4)

Wehnert [59] proposed a model based on a lower cut-off value o for the modification of the Rowe’s
formulation from Eq. 51.1 at low mobilized friction angles

sin Yo ;0 <ym < yRowe

Sinym =1 singm—sin : (51.5)
m Pm Pcs wqunowe <ym<y

1—sin@msin@cs

This dilatancy model obviously requires a specification of an additional parameter, §g.
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Figure 51.2: Comparison of models for mobilized dilatancy angle ¢, implemented in SOFiISTIK for
@ =35°and y =10°

51.3 Model and Results

The properties of the model are presented in Table 51.1. Two material models are considered: the Mohr-
Coulomb and the Hardening Soil, which is combined with the different dilatancy models as described by
the formulations presented in Section 51.2. For the model according to Wehnert (Eq. 51.5) additional
parameter, dilatancy Yo at low stress ratios, is used. The undrained calculation is conducted in the
form of effective stresses with effective shear parameters (c’, ¢’) and stiffness parameters. Skempton’s
parameter B ~ 0.9832 (corresponding undrained Poisson’s ratio is v, = 0.495) is considered to
describe the incompressibility of the pore water and saturated soil [59].

The analysis is carried out using an axisymmetric model. Two confining stress levels are considered,
0c = 200 and 300 kPa. The undrained triaxial test on loose Hostun-RF sand is used as a reference.
More information about the Hostun-RF sand can be found in Wehnert [59].

Table 51.1: Model Properties

Material Geometry Loading

E=60.0 MN/m? Es,ref = 16.0 MN/m? H=0.09m Phasel:

Vur =0.25 Esoref =12.0 MN/m?  D=0.036m 01=03=0c=

Y =0.0 MN/m?3 m=0.75 =200, 300 kPa

¢’ =0.01 kN/m? Rf=0.9 Phase II:

@’ = 34° Ko =0.44 03 = 0. =200, 300 kPa
g =2° B =0.9832 01=0q> 0c

Yo =—4°

The results, as calculated by SOFiSTIK, are presented in Figures 51.3 - 51.9 (MC, HS-Rowe, HS-Cons,
HS-Soreide and HS-Wehnert). Figures 51.3 - 51.8, also include the results of the numerical simulations
and of the experimental tests from Wehnert [59] (Wehnert, Exp. 1 and Exp. 2). On a p — g diagram,
apart from the effective stress paths (ESP), the total stress paths (TSP) as well as the Mohr-Coulomb
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failure condition (MC failure) based on the used shear parameters, ¢’ and ¢’, are displayed.

First the numerical simulation results by Wehnert [59] are compared to the results from the laboratory
tests (Exp. 1 and Exp. 2). Although the oedometer and the drained triaxial tests (see also Benchmark 49)
show good agreement with the results from the laboratory tests, the results from the undrained triaxial
tests show deviation from the experimental results (see Figs. 51.3 - 51.8)". The difference comes mainly
as a result of the used dilatancy model (Eq. 51.5) and the choice of the model parameters, i.e. the peak
dilatancy angle ¢ and the lower cut-off dilatancy angle ¢g.

Comparing the results of the development of the deviatoric stress g and the excess pore water pressure
pPwe between the experiment and the calculation, one can notice a considerable difference, both for
the confining stress level of 200 kPa as well as for the level of 300 kPa (Figs. 51.4, 51.5, 51.7 and
51.8). As explained in [59], the test sample with confining stress of 200 kPa behaves significantly more
dilatant than the sample with the confining stress of 300 kPa. Since only one material model has been
used to model the soil, only one peak dilatancy angle can be used to represent the dilatancy effects of
both test cases. This peak dilatancy angle of ¢ = 2° represents therefore a compromise, leading to a
underestimation of the results for a test with a smaller confining stress level and to overestimation of the
results with larger confining stress level at higher mobilized friction angels.

Further differences arise from the chosen dilatancy model and the used lower cut-off dilatancy angle
Yo = —4°2. Due to the presence of the negative mobilized dilatancy angle (¢m < 0) at low stress
levels, the soil has the tendency to decrease its volume (contraction) under increase of the deviatoric
stress q (shear). However, since the soil is under undrained conditions, the volumetric strains cannot
develop, and as a result the excess pore pressure increases under shear. The increase of the excess
pore pressure means that the effective stresses will reduce (ESP lines curve to the left in the p — g plot,
Figs. 51.3 and 51.6). With the increase of the stress level, the contractive behavior turns to dilatant,
meaning that the negative rate of excess pore pressures (pore water under-pressure) will arise, excess
pore pressures decrease and hence the effective stresses increase. This transition from contractant to
dilatant behavior occurs when the mobilized friction angle go;n becomes larger than the phase transition
angle go}’( which is approximately equal to the critical state friction angle (pés (see Fig. 51.2). As further
noted by Wehnert [59], due to the fact that mobilized dilatancy angle at low stress levels is slightly
heigher and kept constant (¢/m = Yo for 0 < ¢y < t/anowe, Eq. 51.5), the pore water under-pressures
are overestimated.

Next the SOFiSTiK results obtained using the same soil model and dilatancy formulation as in [59] (HS-
Wehnert) can be compared with the reference numerical simulation results (Wehnert). They show good
agreement.

Finally, in other to illustrate the effect that the chosen dilatancy model can have on the results of the
undrained soil, the results of the computation using the hardening soil model with different dilatancy
formulations from Section 51.2 are included.

"Note also that the experimental test results for different samples of the same soil deviate significantly from each other.

2The used value (o = —4° is much higher than the values obtained from experimental tests, which range from —13° to —21°.
The reason for choosing this higher value is due to the fact that the experimental test used to obtain the dilatancy parameters
involve not only shear but also some normal stress application to the test samples [59].
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Figure 51.3: Effective stress path curve (g-p)
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Figure 51.4: Deviatoric stress - axial strain curve (g-£1)
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Figure 51.6: Effective stress path curve (g-p)

216 VERIFICATION - Mechanical Benchmarks | SOFiSTiK 2022



'::'. = =
BE48: Triaxial Consolidated Undrained (CU) Test = SOFISTIK
450
——MC
—— HS-Rowe
400 5
—— HS-Cons
350 | | ——HS-Soreide
—— HS-Wehnert
- - - Wehnert [59]
300 1 |--- Exp.1[59]
~
g 250 5
S
X, 200 |
o
150 5
100 N
50 N
0 | | |
0 5 10 15 20
€1[%]
Figure 51.7: Deviatoric stress - axial strain curve (g-£1)
——MC
300 —— HS-Rowe
—— HS-Cons
—— HS-Soreide
250 —— HS-Wehnert
- - - Wehnert [59]
— --- Exp. 1[59]
o
§ 200
=
=,
o 150
2
Q
100
50

€1[ %]

Figure 51.8: Excess porewater pressure - axial strain curve (pywe-£1)
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Figure 51.9: Mobilised dilatancy angle - friction angle curve (Ym-¢m)

51.4 Conclusion

This example concerning the consolidated undrained triaxial test of a loose sand soil verifies that the
Hardening Soil material model in combination with an appropriate choice of model parameters and
dilatancy model is able to capture important behavior characteristics of the undrained soil. The numerical
results are in a good agreement with the reference solution provided by Wehnert [59].

51.5 Literature

[59] M. Wehnert. Ein Beistrag zur dreainerten und undrainerten Analyse in der Geotechnik. Institut fir
Geotechnik, Universitat Stuttgart: P. A. Vermeer, 2006.

[60] P.W. Rowe. “The stress-dilatancy relation for static equilibrium of an assembly of particles in con-
tact”. In: Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sci-
ences 269.1339 (1962), pp. 500-527.

[61] O. K. Soreide. “Mixed hardening models for frictional soils”. PhD thesis. NTNU Norges teknisk-
naturvitenskapelige universitet, 2003.
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Overview

Element Type(s): CAXI

Analysis Type(s): MNL

Procedure(s): LSTP

Topic(s): SOIL

Module(s): TALPA

Input file(s): triaxial_d_test.dat, triaxial_d_test_100.dat
52.1 Problem Description

In this example a drained (D) triaxial test on a loose Hostun-RF sand is simulated. The specimen is
subjected to different levels of triaxial confining stresses and the results are compared to those of the
experimental tests and numerical simulations, as described in Wehnert [59].

F— D —F

Figure 52.1: Problem Description

52.2 Reference Solution

In this example, the same triaxial test described in Benchmark 48 is examined, but for the case of a
drained sample. Two soil models are utilised, the Mohr-Coulomb (MC) and the Hardening Soil (HS)
model with different dilatancy configurations. Further details on the material models can be found in
Benchmarks 48.

52.3 Model and Results

The properties of the model are presented in Table 52.1. Two material models are considered: the
Mohr-Coulomb and the Hardening Soil, which is combined with the different dilatancy configurations as
described by the formulations presented in Section 52.2 in Benchmark 48.

The analysis is carried out using an axisymmetric model. Two confining stress levels are considered,
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0c = 100 and 300 kPa. The drained triaxial test on loose Hostun-RF sand is used as a reference.
More information about Hostun-RF sand can be found in Wehnert [59] and Benchmark 48.

Table 52.1: Model Properties

Material Geometry Loading

E=60.0 MN/m? Es,ref = 16.0 MN/m? H=0.09m Phasel:

Vur =0.25 Esoref =12.0 MN/m?  D=0.036m 01=03=0c=

¥ =0.0 MN/m3 m=0.75 =100, 300 kPa

¢’ =0.01 kN/m? Rf=0.9 Phase II:

o’ =34° Ko =0.44 03 =0. =100, 300 kPa
g =2° B =0.9832 01=0q> 0c

Yo =—4°

The results, as calculated by SOFiSTiK, are presented in Figures 52.2 - 52.8 (MC, HS-Rowe, HS-Cons,
HS-Soreide and HS-Wehnert). Figures 52.2 - 52.7, also include the results of the numerical simulations
and of the experimental tests from Wehnert [59] (Wehnert, Exp. 1 and Exp. 2). On a p — q diagram
the Mohr-Coulomb failure condition (MC failure) based on the used shear parameters, ¢’ and ¢’, is also
displayed.

If we first analyse the reference curves from Wehnert [59], we will notice, that the agreement between
the numerical simulation and the experimental tests is quite good.

Comparing the SOFISTIK results for the HS model with the dilatancy model acc. to Wehnert (HS-
Wehnert) with the reference numerical results from Wehnert [59], we can notice that the stress paths
p-q are captured exactly for both o.-stress levels. Accordingly, the deviatoric stress g versus the axial
strain €1 curve fits very well to the reference results. For the case of the strain curves some deviation
in results is identified and it seems that the Soreide dilatancy model shows better agreement with the
simulation results from Wehnert.
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Figure 52.2: Effective stress path curve (g-p)
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Figure 52.3: Deviatoric stress - axial strain curve (q-£1)

SOFiSTiK 2022 | VERIFICATION - Mechanical Benchmarks 221



v/
2220,

5528 . .
= SOFiSTiK BE49: Triaxial Drained Test
0.000
——MC
0.200 | /,/: —— HS-Rowe
T —— HS-Cons
0.400 | Y\ T | |——HS-Soreide
RN —— HS-Wehnert
0.600 |\ \¢ - —_— e 4 |- - - Wehnert
N\ s ] |--- Exp. 1
0.800 | SN e ]
< N TT——— L
2.1.000 |- - - i
N T -
w
1.200 - =
1.400 |- =
1.600 - n
1.800 |- =
. 0 | | |
2.0005 5 10 15 20
€1 [%]
Figure 52.4: Volumetric strain - axial strain curve (gv-£€1)
52.3.2 Hostun-RF Sand, 0. = 300 kN/m?
800
’ —— MC failure
—MC
700 - | |——HS-Rowe
——HS-Cons
600 |- - | ——HS-Soreide
—— HS-Wehnert
- - - Wehnert
500 |- =
= --- Exp. 1
g
S 400 )
X
S 300} .
200 |- =
100 - N
o | | | | |
0 100 200 300 400 500 600 700

222

p, p’ [kN/m?]

Figure 52.5: Effective stress path curve (g-p)
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Figure 52.8: Mobilised dilatancy angle - friction angle curve (Ym-@m)

52.4 Conclusion

This example, concerning the triaxial test of a loose consolidated undrained sand soil, verifies that
the results obtained by the Hardening Soil material model with a cut-off in the dilatancy are in a good
agreement with the solution given by Wehnert [59].

52.5 Literature

[59] M. Wehnert. Ein Beistrag zur dreainerten und undrainerten Analyse in der Geotechnik. Institut fir
Geotechnik, Universitat Stuttgart: P. A. Vermeer, 2006.
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53 BES50: A Circular Cavity Embedded in a Full-Plane Un-
der Impulse Pressure

Element Type(s): C2D

Analysis Type(s): DYN

Procedure(s):

Topic(s): SOIL

Module(s): DYNA

Input file(s): sbfem_2d_cric_cavity.dat
53.1 Problem Description

This example addresses a circular cavity with radius ro embedded in a full-plane subjected to a radial
pressure p(t) (Fig. 53.1). The full-plane is assumed to be elastic, homogeneous, isotropic, without
material damping which stretches to infinity and it is modeled with the help of the Scaled Boundary
Finite Elements (SBFE). Plane-strain condition is considered. Load is in a form of a triangular impulse
and applied on the cavity wall (Fig. 53.1b). Radial displacement response of the cavity wall has been
computed and compared to the analytical solution.

p(HA
Po |

0 15 3 E=t-cs/ro

(b) Pressure load

(a) Circular cavity embedded in a full-
plane

Figure 53.1: Problem Definition

53.2 Reference Solution

This problem is essentially a one dimensional problem which has an analytical solution [62]. The force-
displacement relationship for this problem in frequency domain is given by

P(w) =S%(w) - ur(w), (53.1)

where w = 27f represents the circular frequency, P(w) is the total force applied on the cavity wall,
ur(w) is the radial displacement and S*(w) is the dynamic-stiffness coefficient.
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The dynamic-stiffness coefficient for this particular problem has an analytical expression and it reads

2
5®(ag) = fjii- 2(1—v)'\_/\j—2v+ 2(1—v)%ao , (53.2)
F 0)
where
Go shear modulus,
1% Poisson’s ratio,
) mass density,
cs=+/G/p shear wave velocity,
Cp =Csv/(2—2V)/(1—2nu) P-wave velocity,
ap = wro/cp dimensionless frequency,
A=2/(2—0a) coefficient,
a non-homogeneity parameter of elasticity (o = O for the homo-
geneous case),
H,(<2) the second kind Hankel function of the order k,
F= \l A—1)2— )\2% order of the Hankel function.
The static-stiffness coefficient K* is used to non-dimensionlize displacement response
K™ = 121TG2(:/ : [O{(l —V)=2v+/(a(l—v)—2v)2 + 4— 8vJ . (53.3)

The radial displacement response in frequency domain u,-(w) is obtained by first making the Fourier
transformation of the total triangular impulse load P(w) (Fig. 53.1b) and then dividing it with the dynamic-
stiffness coefficient S®(w) (Eq. 53.1). Finally the displacement response is transformed in the time
domain (ur(t)) using the inverse Fourier transformation.

53.3 Model and Results

Material, geometry and loading properties of the model are summarized in the Table 53.1. The plane-
strain model of the full-pane is assumed to be elastic, homogeneous (o = 0) and isotropic.

Table 53.1: Model Properties

Material Geometry Loading Integration parameters
Cs,p,v=0.3 ro P(t) =2mrop(t) At=0.04-ro/cp
Go = pc? Po = 2mropo M,N,6=1.4

Load and the finite element model of the structure are depicted in Fig. 53.2. The structure is comprised
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solely of the 2-node line scaled boundary finite elements and the load is applied directly to the nodes of
the boundary.

Figure 53.2: Finite Element Model

The transient radial displacement response of the cavity wall u,(t) has been computed using the Scaled
Boundary Finite Element Method (SBFEM) in the time domain. The integration of the governing equa-
tions of the SBFEM is performed using the original discretization scheme (const) [62][63] and the ex-
trapolation scheme from [64] based on the parameters M, N and 6 .

The results in dimensionless form are plotted in Fig. 53.3 together with the analytical solution. The
numerical results show excellent agreement with the analytical solution for all three cases.

1 T T T T T T T T T R
—— analytic
0.8 - - - constant
M=40,N=10
0.6 ---M=20,N=15

0.4

ur-K*/Pg

0.2

0

—0.2 | | | | | | | | |

t-cp/ro

Figure 53.3: Radial displacement response

53.4 Conclusion

The example verifies the accuracy of the SBFEM method in modeling unbounded domain problems.
The integration scheme for the solution of the governing equations of the SBFEM in time domain based
on the work from [64] provides the solution with high computational efficiency and little loss of accuracy
compared to the original method from [63].

For the full description of the scheme based on the extrapolation parameter 8 and the meaning of the integration parameters
M, N and 6 consult [64].
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54 BE51: Pushover Analysis: Performance Point Calcu-
lation by EC8 Procedure

Element Type(s):

Analysis Type(s):

Procedure(s):

Topic(s): EQKE

Module(s): SOFILOAD

Input file(s): pushover-pp-ec8.dat
54.1 Problem Description

The following example is intended to verify the Eurocode 8 (EC8) procedure for the calculation of the
performance point (illustrated schematically in Fig. 54.1), as implemented in SOFiSTiK. The elastic
demand and capacity diagrams are assumed to be know.

Sa
A EI. Demand Diagram

Performance Point

apacity Diagram

emand Diagram

N
7

Sdp Sd

Figure 54.1: Determination of the performance point PP (Sdp, Sap)

54.2 Reference Solution
The reference solution is provided in [65].

Assuming that the elastic demand diagram (5% elastic response spectrum in ADRS format') and the
capacity diagram are known, it is possible to determine the performance point PP (Sqp, Sap) (Fig. 54.1).
The procedure comprises of a series of trial calculations (trial performance points PPt (Sdp,t, Sap,t))s
in which the equivalent inelastic single degree of freedom system (SDOF), represented by the capac-
ity diagram, is idealized with the equivalent inelastic SDOF system with a bi-linear force-deformation
relationship. The response in form of the performance point PP is then calculated from the inelastic
response spectrum (demand diagram). The computation stops when the performance point PP is within
a tolerance of a trial performance point PP¢. Detailed description of this procedure can be found in [66],
[67], [65] and [37].

In the reference example [65] the bi-linear idealization of the capacity is assumed to be independent of

TADRS = Spectral Acceleration Sq - Spectral Displacement Sy format
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the performance point and it is performed at the beginning of the analysis. This eliminates the need for
the iterations and the solution of the problem can be obtained in a single calculation step.

Sa Sa
T,
, c
Sae 4 T* =T,
// //
/ //
/ v
! PE
See {-c------ //’ ””””
’ 1
// ‘ =1
Sap | , ! =
/ |
’PY | PP
Sep f----L--=-
Say ’ |
/ : | u>1
// I I
/ | |
4 I I
| |
1 1
Say Sdp = Sde Sa
(a) Short period range, T* < T¢ (b) Medium and long range, T* > T¢

Figure 54.2: Determination of the performance point PP for the equivalent SDOF system

Hence in this example it is assumed that the bi-linear idealization of the capacity diagram is already
known, which means that the point PY (Sqy, Say) is given. The procedure to calculated the performance
point is illustrated in Fig. 54.2 and can be summarized as follows [37]:

1. Determine the period of the idealized system T* = T, from the known PY (Sdy, Sqay):

s
T* =T =212, (54.1)
Say

2. Calculate the elastic spectral response PE (Sqe, Sqae) of the idealized equivalent SDOF system
with the period T* = T, from the given 5%-damped elastic response spectrum (Fig. 54.2);

3. Calculate the yield strength reduction factor Ry :

S
R, =—=; (54.2)
Say
4. Calculate ductility u:
Tc
(Ry—1)-—+1 for T* <Tc
y= T : (54.3)
Ry for T*>Tc
5. Determine the performance point PP (Sgp, Sap) from the inelastic design spectrum:
Sde
Sdp = “ . de = u c—, (5443)
Ry
Sqe(T*)
ap = aeR— : (54.4b)
y
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54.3 Model and Results

In order to verify the analysis procedure for the determination of the performance point, a test case has
been set up in such a way that it comprises of a SDOF with a unit mass and a non-linear spring element.
It is obvious that for such an element the quantities governing the transformation from the original system
to the equivalent inelastic SDOF system must be equal to one, i.e.

bcnoa=1 ; I'=1 ; m=1, (54.5)

where ¢cnog is the eigenvector value at control node, I' is the modal participation factor and m is the
generalized modal mass. Writing now the equations which govern the conversion of the pushover curve
to capacity diagram, we obtain [37]

Ucnod

S4= ——— =Ucnod , (54.6a)
¢cnod -r cne
Vb
Sa= SR Vb, (54.6b)

where Vp, is the base shear and ucnog is the control node displacement.

Since the original system is a SDOF system, Vp and Ucnoqg are nothing else but the force in spring P
and the displacement of the unit mass u, respectively. It follows further that the force-displacement work
law assigned to the spring element corresponds to the capacity diagram in ADRS format, with the force
P and displacement u equal to S4 and Sq, respectively.

The bi-linear idealization of the capacity diagram used in the reference example is defined by two points,
whose coordinates are listed in the Table 54.1 2. According to the analysis above, these points can be
used to define the force- displacement work law P — u of the non-linear spring element (Fig. 54.3).

Table 54.1: Model Properties [65]

Capacity Diagram Elastic Demand

Point (Sd[mm], Sa[m/sz]) 5%-Damped Elastic Response Spectrum
A (61,3.83) ag = {0.609g,0.30g,0.169}

B (00, 3.83) S4=1.0,55=2.5k1=1.0

Tg=0.155, Tc=0.60s, Tp =3.00s

2Not that the point A is nothing else but the point PY (Sqy, Say)-
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Figure 54.3: Force-displacement work law of the non-linear spring

The elastic demand is a 5%-damped elastic response spectrum, whose properties are summarized in
Table 54.1. Three levels of peak ground acceleration ag have been taken into an account. The shape of
the spectrum and the meaning of the parameters specified in Table 54.1 are shown in Figure 54.4.
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Tg<T<Tc
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Tc<T<Tp:
Tc ki
S=Sg-—
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Figure 54.4: 5%-Damped Elastic Response Spectrum (El. Demand Diagram)

The outcome of the analysis is shown in Figures 54.5 to 54.7.
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Figure 54.5: Capacity-Demand-Diagram (ag = 0.609)
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Figure 54.6: Capacity-Demand-Diagram (ag = 0.309)

Sa[misec2]

‘Tb=02  .T=05Tc=06 L T=10
q: E Ty.Tp K
1 1SPL1 1SPL2 L.-m T=15
400 | B .
1 ) % Capacity- -
- [P
n -
_: ;
4 PYW PP | . - .
. [ Pk 1
1 v ! .- T=20
i I - 1 ."</
200
1 | R
] N :
4 . C----Td=30
1 N
' B i e
1. ‘ T . |B.Demand-0.45g - - TTEA0
A ST SRR A . Demand, p = 1.04
0.00. "‘I:;I;:I::|::|:7|77|7>|>-|- T |‘| T T 11T T T 1T 11T T T 11 11T T T T 11117
Q L l: ~J_'> é Sd [mm]
3 3 ] 3 ]
© 8 g 8 g

Figure 54.7: Capacity-Demand-Diagram (ag = 0.159)

The results of the SOFiISTiK calculation and the comparison with the reference solution are summarized
in Table 54.2.

Table 54.2: Results

ag B Ryp Ty  Say  Sdp Sap
[g] [-1 [-1 [s] [mm]l [mm] [m/s?]
SOF. 29 2.9 0.79 61 177  3.83
0.60 Ref. [65] 2.9 2.9 0.79 61 177  3.83
lel [%] 0.0 0.0 0.0 0.0 0.0 0.0
SOF. 1.5 1.5 0.79 61 89  3.83
0.30 Ref. [65] 1.5 1.5 0.79 61 89  3.83
lel [%] 0.0 0.0 0.0 0.0 0.0 0.0
SOF. 1.0 1.0 0.79 44 44  2.78
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Table 54.2: (continued)
ag M Ryp Ty Sdy Sdp Sap
[g] [-]1 [-]1 [s] [mm] [mm] [m/s?]
0.15 Ref. [65] 1.0 1.0 0.79 44 44 2.76
le] [%] 0.0 0.0 0.0 0.0 0.0 0.7
U displacement ductility factor
Ryp reduction factor due to ductility at performance point
Ty period associated with yielding point

Sdy, Sap  spectral displacements at yielding and performance point
Sap pseudo spectral acceleration at performance point

The results are in excellent agreement with the reference solution.

54.4

Conclusion

Excellent agreement between the reference and the results computed by SOFiSTiK verifies that the pro-
cedure for the calculation of the performance point according to Eurocode 8 is adequately implemented.

54.5

[37]
[65]
[66]

[67]
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55 BE52: Verification of Wave Kinematics

Element Type(s):
Analysis Type(s):
Procedure(s):
Topic(s): WAVE
Module(s): SOFILOAD
Input file(s): stokes.dat
55.1 Problem Description

This benchmark is concerned with the validation of wave kinematics of regular nonlinear Stokes 5™
order wave theory. In Fig. 55.1 the properties of a wave can be visualised.

Figure 55.1: Wave

55.2 Reference Solution

The reference solution is provided in [68]. This article investigates the solution of the dispersion relation
of Stokes fifth order wave theory, which is governed by two coupled nonlinear equations in two variables,
through a Newton-Raphson iterative scheme. Different waves are investigated and their wave profile
and horizontal velocitiy is computed and plotted. The interest of this benchmark focuses on the provided
solution for the corrected coefficient in the original expression for C, (the factor +2592 should be
replaced by —2592), which is employed also from SOFiSTiK. For more information on this correction
please refer to Nishimura & al. (1977), Fenton (1985) [69], Bhattacharyya (1995) [68] and SOFiLOAD
manual [37].

55.3 Model and Results

The properties of the considered wave are defined in Table 55.1.
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Table 55.1: Model Properties

Wave Properties

d=107ft H=70ft T=16.30s

The wave profile, i.e. the phase angle 6 versus the surface elevation n, is computed and shown in Fig
55.2 and the horizontal velocity under the wave crest versus the elevation from the seabed (z— d), in
Fig 55.3. Both results are compared to the reference solution, as peresented in Bhattacharyya (1995)
[68].
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Figure 55.2: Wave profile
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Figure 55.3: Horizontal velocity under wave crest

55.4 Conclusion

The very good agreement between the reference and the results computed by SOFiISTiK verifies that
the Stokes fifth order wave theory is adequately implemented.

55.5 Literature

[87] SOFILOAD Manual: Loads and Load Functions. Version 2018-0. SOFiSTiK AG. Oberschlei3heim,
Germany, 2017.

[68] S. K. Bhattacharyya. “On two solutions of fifth order Stokes waves”. In: Applied Ocean Research
17 (1995), pp. 63-68.

[69] J. D. Fenton. “A fifth order Stokes theory for steady waves”. In: J. Waterways, Port, Coastal &
Ocean Engineering 111(2) (1985), pp. 216—-234.
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56 BES53: Verification of Wave Loading

Element Type(s):

Analysis Type(s):

Procedure(s):

Topic(s): WAVE

Module(s): SOFILOAD

Input file(s): wave_loading.dat
56.1 Problem Description

This benchmark is concerned with the validation of wave loading on a structure. In this example the linear
Airy wave theory with Wheeler stretching is applied to one exemplary wave on a monopile, as presented
in Fig. 56.1. The surface elevation and the accumulated forces produced by the wave theory are
compared with the results calculated by WavelLoads. Waveloads is a well-known software developed
within the research project GIGAWIND at Hannover University for calculating wave induced loading on
hydrodynamically transparent structures [70].

Figure 56.1: Wave

56.2 Reference Solution

The reference example is calculated with WavelLoads. Further information on the model can be found
in the WaveLoads manual [70]. This benchmark aims at verifying three important components: the Airy
wave theory, the Wheeler stretching scheme and the Morison equation [37].

56.3 Model and Results

The properties of the considered wave and the structure are defined in Table 56.1. The wave profile, i.e.
the surface elevation n over time of one period, is computed and shown in Fig 56.2 and the accumulated
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forces over time of one period, in Fig 56.3. Both results are compared to the calculated reference
solution [70].

Table 56.1: Model Properties

Wave Properties Structure Properties
d=34m Dp=6m
H=17.5m Lp=54m
T=15s Cm=2.0
SWL=0m Cy=0.7

The pile is modeled with 500 elements as in the reference example. The Wheeler stretching is applied.
The calculated wave length is L = 246.013 m and the calculated depth criterion d/L = 0.138 indicates
that the examined case falls into finite water.

10

8

n[m]
o

-8 —+— Reference
—— SOFISTiK

_10 | | | | | | | |
0 2 4 6 8 10 12 14 16

T[s]

Figure 56.2: Wave profile
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Figure 56.3: Accumulated Force for Airy linear wave theory in combination with Wheeler Stretching

56.4 Conclusion

The very good agreement between the reference and the results computed by SOFISTIK verifies that
the linear Airy wave theory, the Wheeler stretching scheme and the Morison equation are adequately
implemented.

56.5 Literature

[37] SOFILOAD Manual: Loads and Load Functions. Version 2018-0. SOFiSTiK AG. Oberschlei3heim,
Germany, 2017.

[70] K. Mittendorf, B. Nguyen, and M. Blimel. WaveLoads - A computer program to calculate wave
loading on vertical and inclined tubes. ISEB - Fluid Mechanics Institute, University of Hannover.
2005.
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57 BE54: Equivalent Linear Temperature Load

Element Type(s):

Analysis Type(s):

Procedure(s):

Topic(s): Fire and temperature

Module(s): SOFILOAD

Input file(s): eqv_linear_temp_load.dat
57.1 Problem Description

The following example is focused on verifying the effects of the nonlinear temperature gradient along
the height of a beam’s cross section. A simply supported beam (Figure 57.1a) is analyzed with the
corresponding temperature distribution (heating and cooling profiles) in the cross section (Figure 57.1b).
The internal stresses due to the nonlinear temperature gradient can be divided into stresses due to
uniform and linear temperature component and into remaining self-equilibrating eigenstresses [71].

% - .
- A
a) ! A
L 4>A
%A T
b) Cross-section A-A Heating Cooling

\
\ A

Figure 57.1: (a) Simply supported beam; (b) Cross section with corresponding heating and cooling
profiles

57.2 Reference Solution

The reference solution is calculated analytically from the stress distribution corresponding to the re-
strained conditions, which is obtained by multiplying the assigned temperature profile with the coefficient
of thermal expansion at and the modulus of elasticity E [72, 73] :

07 (2) = —Ea:AT(2), (57.1)

Stress due to the restraining axial force is derived by integrating the stresses o (z) multiplied with the
corresponding width b(z) over the cross section height and dividing the value with the cross-section
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area A [72, 73]. The same stress value can be obtained by multiplying the equivalent uniform (constant)
temperature component ATeq with the coefficient of thermal expansion and the modulus of elasticity
(Figure 57.2b):

1 rh
Ocons = Zf OT(Z)b(Z)dZ = —EatATeq (572)
0

Stresses due to the restraining moment are calculated by taking moments around the centroid of the
cross section and dividing the values with the section modulus [72, 73]. Correspondingly, the linear
temperature distribution multiplied with the coefficient of thermal expansion and the modulus of elasticity
(Figure 57.2c) yields the same stress values. Hence, the equivalent linear temperature component
AT, eq can be derived from the following expression:

h
0" (2)b(2)(z—2)dz = —EatAT;,eq (57.3)

Oline =

I/h Jo

Ea,AT(zy) EaiATeq eigenstresses

centroid  Ea,AT(z,) |
il ol 0 S E S A N 77§

[

\

\

\
EaAT(zg) /| L

EqAT, ¢q
a) b) c) d)

Figure 57.2: (a) Restrained stresses; (b) Stresses due to the equivalent uniform temperature; (c)
Stresses due to the equivalent linear temperature; (d) Self-equilibrating eigenstresses

In case of a simply supported beam, it is free to expand and bend. Therefore, the corresponding strain
distributions are generated. The differences between the restrained stress distribution and that which
result in axial and bending strains, are trapped in the section and are known as self-equilibrating eigen-
stresses [73].

57.3 Model and Results

Two different cross-sections with the corresponding nonlinear temperature gradient are investigated:
a concrete T-beam and a composite cross-section. The used material properties for concrete and
steel are presented in Table 1. The implemented geometry and the temperature loading profiles for
both heating and cooling conditions are shown in Figure 3. The beam’s length is chosen to be 10
m. Reference solution for the same concrete T-beam cross-section, material properties and heating
conditions can be found in [73].
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Table 57.1: Material Properties

Type of cross section Material properties

T-beam Econc = 35000 MPa

atrconc =1.2x 10_5 K~
Composite cross section

Econc=35000 MPa Estee[=210000 MPa

Qt,conc = 1.2 x 10_5 K~ At steel = 1.2 % 10_5 K~
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Figure 57.3: (a) T-beam concrete cross section - geometry [cm] with assigned temperature profiles; (b)
Composite cross section - geometry [cm] with assigned temperature profiles

The calculated values of the equivalent uniform and linear temperature component are compared with

the reference values in Table 2.

Table 57.2: Results

ATeq ATz eq

[°C] [°C]

T-beam Heating SOF. 4,600 —11.096
Ref.[73] 4.600 —11.096

ler] [%] 0.00 0.00

Cooling SOF. —3.544 4.704

Ref. —3.544 4.704

ler] [%] 0.00 0.00
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Table 57.2: (continued)

ATeq ATz eq

[°C] [°C]

Composite Heating SOF. 5.111 —9.740
Ref. 5.111 —9.740

ler] [%] 0.00 0.00

Cooling SOF. —2.047 —7.371

Ref. —2.047 —7.371

ler] [%] 0.00 0.00

Calculated eigenstresses for a simply supported beam with the T-beam cross-section are shown in
Figure 57.4. Results for the temperature heating profile calculated in [73] correspond nicely with the
SOFiSTiK calculated eigenstresses (Figure 57.4a).

2.26
2.26
051
162
031
2.3Qmn.
g ——
(a) For the heating profile (b) For the cooling profile

Figure 57.4: Eigenstresses for the T-beam cross-section in N/mm?

57.4 Conclusion

An excellent agreement between the reference solution and the numerical results calculated by
SOFISTIK verifies that the effects of the nonlinear temperature gradient are adequately taken into ac-
count.

57.5 Literature

[71] M.M. Elbadry and A. Ghali. “Nonlinear temperature distribution and its effects on bridges”. In:
International Association of Bridge and Structural Engineering Proceedings (1983), pp. 66—83.

[72] L.A. Clark. Concrete Bridge Design to BS 5400. Construction Press, 1983.

[73] D.L. Keogh and E. O Brien. Bridge Deck Analysis. CRC Press, 2005.
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58 BE55: Design elements and SOFiSTiK T-beam Philos-
ophy

Element Type(s): B3D, SH3D

Analysis Type(s): Linear

Procedure(s):

Topic(s): Design Elements

Module(s): ASE, DECREATOR

Input file(s): designElements_tbeamphilosophy.dat
58.1 Problem Description

This verification sets a benchmark for Design Elements in SOFiSTIiK 2018 at the analysis level. Re-
sults are compared with those of the existing SOFiSTiK T-Beam Philosophy, and a reference analytical
solution.

58.2 Reference Solution

As an example, the solution of the bending moment at the middle support My, s of a two span continuous
T-beam system shown in figure 58.1 is considered. The effective width of the beam is the determining
parameter. The exact analytical value of the support moment is given by:

wl?

Figure 58.1: Reference system: continuous beam and its bending moment distribution

For bending design of a T-beam, analysis can be done in the module ASE using the SOFiSTiK T-
beam Philosophy [74, 75, 76, 77]. Accordingly, the resulting bending moment My, rpeqm is calculated
by multiplying the effective width befs with the nodal value of the plate elements that is computed by
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averaging some of the nodal values of the plates the at the support (eg. my,avg. = (M1+mz+ms3)/3),
then adding the remaining moment carried by the beam element My, peam. That is:

My, Tbeam = My,beam + My,avg. * befr (58.2)

58.3 Model and Results

The wide flange of the continuous T-beam is modeled with quad elements. In addition, a centric beam
with a T-cross section is embedded at the center of the flange. A uniformly distributed area load is then
applied over the flange. To supplement the comparison, three variations of this model are made, in
which only the effective width is altered.

Effective width, beg Mid-line of

A
Y

AN

L4
1
-
H

Beam element Geometric center Flate elements
with T-Section of cross section  ©f flange

Figure 58.2: Sectional layout of a T-beam FE-model according to the T-beam Philosophy in SOFiSTiK

In contrast to the SOFiSTiK T-Beam Philosophy stated in equation 58.2, the bending moment calculation
by Design Elements takes the integral of all the nodal values covered within the effective width, then adds
the remaining beam moment. This improves the approximation, and can be put as:

bes

My, tbeam = My,beam + f my,p(l) dl (58.3)
0

Figure 58.3 illustrates this difference.

beff

m
...-2

|

| I

y, avg.
|

|

TIETE
/\ /\

Figure 58.3: Consideration of the actual support bending moment distribution across the plate elements
in T-beam Philosophy (left) and Design Elements

As a result, applying the T-beam Philosophy on a model with a larger effective width, the error in the
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support bending moment is more pronounced (see table 58.1). However, the results of the Design
Elements, as one may expect, remain well approximate for all effective widths. In this example, larger
widths were so chosen that the deviations could clearly be illustrated.

Table 58.1: Comparison of support moments for varying effective widths

Effective Widths befr,i [M] 1.0 2.0 4.0
Ref. [kNm] —32.4 —64.8 -—-129.6
SOF. T-Beam Phil. [kNm] —32.2 —66.2 -—148.8
lel] [%] 0.6 2.0 10.0
Design Elements [KNm] —32.0 —64.0 -129.3
lel] [%] 1.2 1.2 0.2

58.4 Conclusion

In case of a flexural design of a finite element structural model consisting T-beams, the results using
the Design Elements and the SOFiSTiK T-beam Philosophy match that of the exact analytical solution
up to a certain effective width. The design elements however always ensure more approximate results
regardless of the effective width.

58.5 Literature

[74] C. Katz and J. Stieda. Praktische FE-Berechnungen mit Plattenbalken. Bauinformatik 1, 1992.

[75] W. Wunderlich, G. Kiener, and W. Ostermann. Modellierung und Berechnung von Deckenplatten
mit Unterziigen. Bauingenieur, 1994.

[76] J. Bellmann. Vorgespannte schiefwinklige Plattenbalkenbriicke. 7. SOFiSTiK Seminar, 1994.

[77] C. Katz. Neues zu Plattenbalken. 7. SOFiSTiK Seminar, 1994.
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59 BE56: Interface element

Element Type(s): C2D

Analysis Type(s): MNL

Procedure(s):

Topic(s): Interface Element

Module(s): SOFIMSHC, TALPA

Input file(s): interface_elements.dat
59.1 Problem Description

The following example is focused on verifying the interface element which can be used to model the
contact behaviour in a geotechnical model. In the example according to [78] interface elements are
simulating the contact between a long elastic block on a rigid foundation. The block is subjected to
pressure p at one vertical side, while being restrained at the other end, and no strain is permitted in the
y direction (Figure 59.1).

Ay
] p
T -
Interface D —
) X =~
A A A A A A

Figure 59.1: Long elastic block on a rigid foundation

59.2 Reference Solution

The distribution of shear stress along the interface between x = 0 and x = x1, where X1 is the point at
which the shear stress reaches its maximum level, is given analytically by [78]:

ksmy, eadX _ g—ax
T(X) = o . Sax1 — g—axa . [pH— Tmax(L — xl)] (59.1)
where
m = o2
ks shear stiffness parameter,
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Y Poisson’s ratio,

E Elastic modulus,

p pressure applied at x =L,

Tmax maximum shear stress (cohesion)
H height of the elastic block,

L length of the elastic block

For the slipping portion of the block, between x = x1 and x = L, the shear stress is constant, i.e.
T= Tmax.

The point x = X3 is calculated iteratively by applying the Newton Raphson iterative scheme for the
following equation [78, 79]:

edX 4 g—ax paH

P ap—— +a(L—x1)—

=0 (59.2)

Tmax

59.3 Model and Results

Material, geometry and loading properties of the model are summarized in the Table 59.1. To satisfy the
required condition of no strain in the y direction the normal stiffness of the interface elements, i.e. the
elastic constant normal to the interface surface cs is defined with a relatively high value. Plane strain
conditions are assumed, and nonlinear analysis is performed with loading being increased in increments
of 2.5 kPa up to 400 kPa.

Table 59.1: Model Properties

Material Geometry Loading
Elastic block: Increments of 2.5 kPa
E=100MPa,v=0.0 L=10.0mH=1.0m up to 400 kPa

Interface elements:

ks = ct = 10* kN/m3 Thickness of 0.01 m
Tmax = coh = 30 kN/m?

cs =107 kN/m3

The shear stress distribution along the interface length is plotted in Figure 59.2, and verified with respect
to the formulas provided in Section 59.2 for the loading levels of 100, 200, 300 and 400 kPa. Further-
more, the longitudinal displacement distribution at the bottom of the elastic block is compared with the
results of the finite element analysis provided by [78] (Figure 59.3).
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Figure 59.2: Interface shear stress distribution
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Figure 59.3: Longitudinal displacement distribution at the bottom of the elastic block

When comparing the numerical results in Figure 59.2 with the analytical solution a slight difference can
be noticed. It should be noted that the analytical solution provided in Section 59.2 is not exact since it
is based on the assumption that the normal stresses are constant along the height of the elastic block
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[78]. In reality, the normal stress will be higher near the unrestrained upper boundary compared to the
lower one, which can be seen in Figure 59.4 for a distance of 2 m from the restrained vertical face of
the elastic block.
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Figure 59.4: Stress distribution along the height of the block, at x = 2.0 [m]

59.4 Conclusion

A good agreement between the reference solution and the numerical results calculated by SOFiSTiK
verifies the implementation of the interface element.

59.5 Literature

[78] C.C. Hird and D. Russell. “A Benchmark for Soil-Structure interface Elements”. In: Computers and
Geotechnics (1990).

[79] R.C. Barros et al. “A Benchmark for Soil-Structure interface Elements”. In: Proceedings of the
XXXVIII Iberian Latin-American Congress on Computational Methods in Engineering (2017).
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Analysis Type(s):
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Input file(s): response_spectrum_analysis.dat
60.1 Problem Description

The following example is focused on the results of a response spectrum analysis of a simply supported
beam, with the problem description defined by [80]. A simple beam with a rectangular cross section,
shown in Fig.60.1a, is subjected to a vertical movement of its supports according to the acceleration
history shown in Fig.60.1b. The acceleration changes linearly from g to —g within a time period of 2tg4,
and is zero afterwards, with g being the gravitational acceleration.

The response of the system is determined based only on the first eigenmode. Therefore, modal super-
position is not carried out in this example. Furthermore, zero damping of the system is assumed.

T
y
b) a [m/s?]
g
ty 2t t[s]
-g iiiiiiiiiiiiiiiiiiiiiii

Figure 60.1: (a) Simply supported beam; (b) Acceleration history

The acceleration of a mass in a SDOF spring-mass system subjected to the base acceleration history
from Fig.60.1b is defined as follows [80], for t < 2t4:
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. sinwt t
U=g|(l—coswt+ - — (60.1)
wty tyq
and for t > 2tg:
. . sinw(t— 2tq)
U = U=ty cOSwW(t—2ty) + utzzth (60.2)

where w is the circular eigenfrequency.

60.2 Reference Solution

In the first step of the response spectrum analysis, the eigenfrequency of the first eigenmode is calcu-
lated as follows [80]:

m | El, £0.3

where [ is the length and m is the mass per unit lenght of the beam, and EI, is the bending stiffness.

Based on the calculated eigenfrequency, the maximum relative displacement of the equivalent SDOF
system, Umax,0, iS determined from the corresponding response spectrum [80]. Subsequently, the
maximum beam deflection is calculated [80]:

Umax = MUmax,0 (60.4)

The shape function for the first eigenmode @(x) is given by [80]
. TX
®(x) =sin T (60.5)
, and the modal participation factor I" is calculated as:

fémcb(x)dx 4

=— = (60.6)
fom[<1>(x)]2dx m
The bending moment is defined as follows [80]:
M EI 2u) (60.7)
T ax2 '
where u(x) is the beam deflection for the first eigenmode
. TX
u(x) = Umax Sin T (60.8)

Therefore, the maximum bending moment in the middle of the span is computed as:
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EI, m?
My max = l—zumax (60.9)

60.3 Model and Results

Material, geometry and loading properties of the beam model defined in a plane system are summarized
in Table 60.1.

Table 60.1: Model Properties

Material Properties Geometric Properties Loading

E=206842 MPa [=6.096m g=10m/s?

p=104730kg/m?3 h=35.56mm tgy=0.1s
b=3.7026 mm

The response spectrum values are calculated as maximum acceleration values, in the units of g, from
the Equations 60.1 and 60.2 as a function of the eigenperiod. For the purpose of this example, only the
values in the proximity of the system s first eigenperiod are taken as the input points of the response
spectrum. The selected points are listed in Table 60.2 and also shown on the graph of the response
spectrum, which is plotted as a function of the eigenfrequency in Figure 60.2.

Table 60.2: Calculated points of the response spectrum

Eigenfrequency [Hz] Eigenperiod [s] Max. acceleration [g]
5.00 0.20 2.000000
5.50 0.181818 1.818181
6.00 0.166667 1.666667
6.05 0.165289 1.652893
6.10 0.163934 1.639344
6.15 0.162602 1.626016
6.50 0.1538461 1.538461
7.00 0.142857 1.428571
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Figure 60.2: The response spectrum and the selected input points

The calculated values of the eigenfrequency f of the first mode, and the maximum deflection umqx and
the bending moment My, max in the middle of the span as a result of the response spectrum analysis,
are compared with the reference values in Table 60.3.

Table 60.3: Results

SOF.  Ref. [80]

f[Hz] 6.12 6.10
Umax [MmM] 14.15  14.22
My, max [kNm] 108.03 108.41

60.4 Conclusion

A very good agreement between the reference solution and the numerical results calculated by
SOFiSTiK verifies the implementation of the response spectrum analysis.

60.5 Literature

[80] J.M. Biggs. Structural Dynamics. McGraw-Hill, 1964.
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