



Benchmark Example No. 5

# Design of a Rectangular CS for Double Bending and Axial Force

SOFiSTiK | 2022

#### VERIFICATION DCE-EN5 Design of a Rectangular CS for Double Bending and Axial Force

VERiFiCATiON Manual, Service Pack 2022-12 Build 74

Copyright © 2023 by SOFiSTiK AG, Nuremberg, Germany.

#### SOFISTIK AG

HQ Nuremberg Flataustraße 14 90411 Nürnberg Germany

T +49 (0)911 39901-0 F +49(0)911 397904 Office Garching Parkring 2 85748 Garching bei München Germany

> T +49 (0)89 315878-0 F +49 (0)89 315878-23

info@sofistik.com www.sofistik.com

This manual is protected by copyright laws. No part of it may be translated, copied or reproduced, in any form or by any means, without written permission from SOFiSTiK AG. SOFiSTiK reserves the right to modify or to release new editions of this manual.

The manual and the program have been thoroughly checked for errors. However, SOFiSTiK does not claim that either one is completely error free. Errors and omissions are corrected as soon as they are detected.

The user of the program is solely responsible for the applications. We strongly encourage the user to test the correctness of all calculations at least by random sampling.

Front Cover Arnulfsteg, Munich Photo: Hans Gössing



| Overview               |                                      |
|------------------------|--------------------------------------|
| Design Code Family(s): | DIN                                  |
| Design Code(s):        | DIN EN 1992-1-1                      |
| Module(s):             | AQB                                  |
| Input file(s):         | rectangular_double_bending_axial.dat |

#### **1 Problem Description**

The problem consists of a rectangular section, as shown in Fig. 1. The cross-section is designed for double axially bending moments  $M_{Edy}$ ,  $M_{Edz}$  and a compressive force  $N_{Ed}$ .

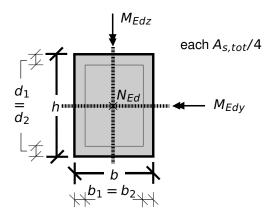



Figure 1: Problem Description

## 2 Reference Solution

This example is concerned with the design of sections for ULS, subject to double bending with axial force. The content of the problem is covered by the following parts of DIN EN 1992-1-1:2004 [1]:

- Design stress-strain curves for concrete and reinforcement (Section 3.1.7, 3.2.7)
- Basic assumptions for section design (Section 6.1)
- Reinforcement (Section 9.3.1.1, 9.2.1.1)

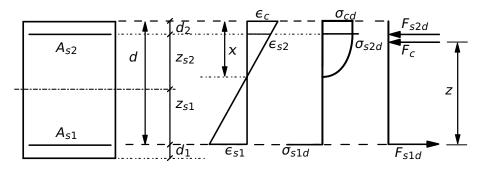



Figure 2: Stress and Strain Distributions in the Design of Doubly Reinforced Cross-sections

The design stress-strain diagram for reinforcing steel considered in this example, consists of an inclined top branch, as presented in Fig. 3 and as defined in DIN EN 1992-1-1:2004 [1] (Section 3.2.7).



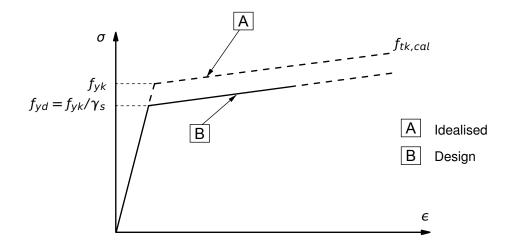



Figure 3: Idealised and Design Stress-Strain Diagram for Reinforcing Steel

## 3 Model and Results

The rectangular cross- section, with properties as defined in Table 1, is to be designed, with respect to DIN EN 1992-1-1:2004 (German National Annex) [1], [2], under double axial bending and an axial compressive force of 1600 kN. The calculation steps with a commonly used design method [3] [4] are presented below and the results are given in Table 2. Here, it has to be mentioned that the standard methods employed in order to calculate the reinforcement are approximate, and therefore deviations often occur.

| Material Properties   | Geometric Properties   | Loading              |
|-----------------------|------------------------|----------------------|
| C 35/45               | h = 50.0 cm            | $M_{Edy} = 500  kNm$ |
| <i>B</i> 500 <i>A</i> | $b_1 = b_2 = 5.0  cm$  | $M_{Edz} = 450  kNm$ |
|                       | $d_1 = d_2 = 5.0 \ cm$ | $N_{Ed} = -1600  kN$ |
|                       | b = 40 cm              |                      |

| Table 2 | 2: Re | sults |
|---------|-------|-------|
|---------|-------|-------|

|                      | SOF.  | Interaction Diagram [3] |
|----------------------|-------|-------------------------|
| $A_{s,tot} [cm^2/m]$ | 115.9 | 113.1                   |



## 4 Design Process<sup>1</sup>

Design with respect to DIN EN 1992-1-1:2004 (NA) [1] [2]:2

Material:

Concrete:  $\gamma_c = 1.50$ 

Steel:  $\gamma_s = 1.15$ 

 $f_{ck} = 30 \text{ MPa}$  $f_{cd} = a_{cc} \cdot f_{ck} / \gamma_c = 0.85 \cdot 35 / 1.5 = 19.8 \text{ MPa}$ 

 $f_{yk} = 500 MPa$  $f_{yd} = f_{yk}/\gamma_s = 500/1.15 = 434.78 MPa$ 

Design Load:

$$\begin{split} N_{Ed} &= -1600 \; kN \\ M_{Edy} &= 500 \; kNm \\ M_{Edz} &= 450 \; kNm \end{split}$$

(NDP) 2.4.2.4: (1), Tab. 2.1DE: Partial factors for materials

Tab. 3.1: Strength for concrete 3.1.6: (1)P, Eq. (3.15):  $a_{cc} = 0.85$  considering long term effects

3.2.2: (3)P: yield strength  $f_{yk} = 500$ *MPa* 3.2.7: (2), Fig. 3.8

Design with respect to Interaction diagram for Double Bending with axial force for rectangular cross-sections:

$$\mu_{Edy} = \frac{M_{Ed}}{b \cdot h^2 \cdot f_{cd}} = \frac{500 \cdot 10^{-3}}{0.40 \cdot 0.50^2 \cdot 19.8} = 0.252$$

$$\mu_{Edz} = \frac{M_{Ed}}{b \cdot h^2 \cdot f_{cd}} = \frac{450 \cdot 10^{-3}}{0.40 \cdot 0.50^2 \cdot 19.8} = 0.284$$

$$\nu_{Ed} = \frac{N_{Ed}}{b \cdot h^2 \cdot f_{cd}} = \frac{-1600 \cdot 10^{-3}}{0.40 \cdot 0.50 \cdot 19.8} = -0.403$$

from design chart  $\rightarrow \omega_{tot} = 1.24$  for:

- $d_1/h = d_2/h = 0.05/0.5 = 0.10$
- $b_1/b = b_2/b = 0.05/0.4 = 0.08 \approx 0.10$
- v = -0.4
- $\mu_1 = max[\mu_{Edy}; \mu_{Edz}] = 0.284$
- $\mu_2 = min[\mu_{Edy}; \mu_{Edz}] = 0.252$

 $A_{s,tot} = \omega_{tot} \cdot \frac{b \cdot h}{f_{yd}/f_{cd}} = 113.1 \ cm^2$ 

 $A_{s,tot/4} = 28.28 \ cm^2$ 

Tab. 9.7 [3]:  $\mu - \nu$  Interaction diagram for concrete C12/15 – C50/60 - Rectangular cross-section with all-round symmetric reinforcement.

 $<sup>^1</sup> The tools used in the design process are based on steel stress-strain diagrams, as defined in [1] 3.2.7:(2), Fig. 3.8, which can be seen in Fig. 3.$ 

<sup>&</sup>lt;sup>2</sup>The sections mentioned in the margins refer to DIN EN 1992-1-1:2004 (German National Annex) [1], [2], unless otherwise specified.



## 5 Conclusion

This example shows the calculation of the required reinforcement for a rectangular beam cross-section under double axial bending with compressive axial force. It has been shown that the results are reproduced with excellent accuracy.

#### 6 Literature

- DIN EN 1992-1-1/NA: Eurocode 2: Design of concrete structures, Part 1-1/NA: General rules and rules for buildings - German version EN 1992-1-1:2005 (D), Nationaler Anhang Deutschland - Stand Februar 2010. CEN. 2010.
- [2] F. Fingerloos, J. Hegger, and K. Zilch. DIN EN 1992-1-1 Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken - Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau. BVPI, DBV, ISB, VBI. Ernst & Sohn, Beuth, 2012.
- [3] K. Holschemacher, T. Müller, and F. Lobisch. *Bemessungshilfsmittel für Betonbauteile nach Eurocode 2 Bauingenieure*. 3rd. Ernst & Sohn, 2012.
- [4] Beispiele zur Bemessung nach Eurocode 2 Band 1: Hochbau. Ernst & Sohn. Deutschen Betonund Bautechnik-Verein E.V. 2011.