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Free Vibration of a Under-critically Damped SDOF System

Overview

Element Type(s): SPRI, DAMP

Analysis Type(s): DYN

Procedure(s): TSTP

Topic(s):

Module(s): DYNA

Input file(s): damped sdof.dat

1 Problem Description

This problem consists of an under-critically damped linearly elastic SDOF system undergoing free vi-
brations, as shown in Fig. 1. The response of the system is determined and compared to the exact
reference solution.
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Figure 1: Problem Description

2 Reference Solution

The differential equation governing the free vibration of a linear elastic damped SDOF system, as shown
in Fig. 1 is given by [1] [2]:

m ̈ + c ̇ + k  = 0 (1)

where c is the linear viscous damping, k the linear spring stiffness and m the mass of the system.
Dividing Eq. 1 by m gives

̈ + 2 ξ ωn ̇ + ω2n  = 0 (2)

where ωn =
p

k/m as defined in Benchmark 23 and ξ represents the damping ratio

ξ =
c

2mωn
=

c

ccr
(3)

The parameter ccr is called the critical damping coefficient (Eq. 4), because it is the smallest value of
c that inhibits oscillation completely. If c ¡ ccr or ξ ¡ 1 the system is said to be under-critically damped
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Free Vibration of a Under-critically Damped SDOF System

and thus oscillates about its equilibrium position with a progressively decreasing amplitude [2].

ccr = 2mωn = 2
p

k m =
2k

ωn
(4)

Free vibration is initiated by disturbing the system from its static equilibrium position by imparting the
mass some displacement (0) and/or velocity (0̇) at time 0. Subjected to these initial conditions, the
solution to the homogeneous differential equation of motion is:

 (t) = e−ξ ωn t

�

 (0) cos (ωD t) +
�

̇(0) + ξ ωn (0)

ωD

�

sn (ωD t)
�

(5)

where ωn represents the natural frequency of damped vibration and TD the natural period of damped
vibration given by

ωn = ωn

q

1 − ξ2 (6)

Td =
2π

ωD
=

Tn
Æ

1 − ξ2
(7)

Figure 2: Effects of Damping on Free Vibration

The damped system oscillates with a displacement amplitude decaying exponentially with every cycle of
vibration, as shown in Fig. 2. The envelope curves ±ρe−ξ ωn t touch the displacement curve at points
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slightly to the right of its peak values, where

ρ =

√

√

√

(0)2 +
�

̇(0) + ξ ωn (0)

ωD

�2

(8)

3 Model and Results

The properties of the model are defined in Table 1. The system is initially disturbed from its static
equilibrium position by a displacement of 20 mm and is then let to vibrate freely. Eq. 5 is plotted
in Fig. 3 and is compared to the calculated time history of the displacement of the SDOF system for
different time integration methods. The time step is taken equal to 0.02 sec corresponding to a dt/T
ratio of 1/50. From the curves, it is obvious that the examined integration schemes are in a good
agreement with the exact solution. The damping of the SDOF system is represented in two ways, either
by the spring element with a damping value in axial direction or with the damping element. The results
obtained are exactly the same for both case. This can be visualised in the result files for the case of the
Newmark integration scheme.

Table 1: Model Properties

Model Properties Excitation Properties

m = 1 t (0) = 20mm

k = 4π2 kN/m (0̇) = 0

T = 1 sec

ξ = 5 %
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Figure 3: Damped Free Vibration Response

4 Conclusion

This example examines the response of a linear elastic under-critically damped SDOF system undergo-
ing free vibration. It has been shown that the behaviour of the system is captured adequately.
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